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Enhancing Machine Learning
Models Using Feature Selection

This chapter describes how genetic algorithms can be used to improve the performance of
supervised machine learning models by selecting the best subset of features from the
provided input data. This chapter will start with a brief introduction to machine learning
and then describe the two main types of supervised machine learning tasks — regression
and classification. We will then discuss the potential benefits of feature selection when it
comes to the performance of these models. Next, we will demonstrate how genetic
algorithms can be utilized to pinpoint the genuine features that are generated by the
Friedman-1 Test regression problem. Then, we will use the real-life Zoo dataset to create a
classification model and improve its accuracy — again by applying genetic algorithms to
isolate the best features for the task.

In this chapter, we will cover the following topics:

e Understand the basic concepts of supervised machine learning, as well as
regression and classification tasks

e Understand the benefits of feature selection on the performance of supervised
learning models
¢ Enhance the performance of a regression model for the Friedman-1 Test

regression problem, using feature selection carried out by a genetic algorithm
coded with the DEAP framework
¢ Enhance the performance of a classification model for the Zoo dataset

classification problem, using feature selection carried out by a genetic algorithm
coded with the DEAP framework

We will start this chapter with a quick review of supervised machine learning. If you are a
seasoned data scientist, feel free to skip the next section.


Eyal Wirsansky
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Technical requirements

In this chapter, we will be using Python 3 with the following supporting libraries:

® deap

e numpy

® pandas

® matplotlib
® seaborn

e sklearn —introduced in this chapter

In addition, we will be using the UCI Zoo Dataset (https://archive.ics.uci.edu/ml/

datasets/zo0).

The programs that will be used in this chapter can be found in this book's GitHub
repository at https://github.com/PacktPublishing/Hands-On-Genetic-Algorithms—
with-Python/tree/master/Chapter07.

Check out the following video to see the Code in Action:
Placeholder link

Supervised machine learning

The term machine learning typically refers to a computer program that receives inputs and
produces outputs. Our goal is to train this program, also known as the model, to produce
the correct outputs for the given inputs, without explicitly programming them.

During this training process, the model learns the mapping between the inputs and the
outputs by adjusting its internal parameters. One common way to train the model is by
providing it with a set of inputs, for which the correct output is known. For each of these
inputs, we tell the model what the correct output is so that it can adjust, or tune itself,
aiming to eventually produce the desired output for each of the given inputs. This tuning is
at the heart of the learning process.

Over the years, many types of machine learning models have been developed. Each model
has its own particular internal parameters that can affect the mapping between the input
and the output, and the values of these parameters can be tuned, as illustrated in the
following image:
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Parameter Tuning

Parameter tuning of a machine learning model

For example, if the model was implementing a decision tree, it could contain several IF-
THEN statements, which can be formulated as follows:

IF <input value> 1S LESS THEN <some threshold value> THEN <go to some target branch>

In this case, both the threshold value and the identity of the target branch are parameters
that can be adjusted, or tuned, during the learning process.

To tune the internal parameters, each type of model has an accompanying learning
algorithm that iterates over the given input and output values and seeks to match the given
output for each of the given inputs. To accomplish this goal, a typical learning algorithm
will measure the difference (or error) between the actual output and the desired output; the
algorithm will then attempt to minimize this error by adjusting the model's internal
parameters.

The two main types of supervised machine learning are classification and regression, and
will be described in the following subsections.
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Classification

When carrying out a classification task, the model needs to decide which category a certain
input belongs to. Each category is represented by a single output (called a label), while the
inputs are called features:

Parameter Tuning

Machine learning classification model

For example, in the well-known Iris Flower dataset (https://archive.ics.uci.edu/ml/
datasets/Iris), there are four features: Petal length, Petal width, Sepal length, and Sepal
width. These represent the measurements that have been manually taken of actual Iris
flowers.

In terms of the output, there are three labels: Iris setosa, Iris virginica, and Iris versicolor.
These represent the three different types of Iris.

When the input values are present, which represent the measurements that were taken
from a given Iris flower, we expect the output of the correct label to go high and the other
two to go low:
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“Model”

Parameter Tuning

Iris Flower classifier illustrated

Classification tasks have a multitude of real-life applications, such as approval of bank
loans and credit cards, email spam detection, handwritten digit recognition, and face
recognition. Later in this chapter, we will be demonstrating the classification of animal
types using the Zoo dataset.

The second main type of supervised machine learning, regression, will be described in the
next subsection.

Regression

In contrast to classification tasks, the model for regression tasks maps the input values into
a single output to provide a continuous value, as illustrated in the following image:

“Features”

—_—

Output

(continuous

Parameter Tuning

Machine learning regression model
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Given the input values, the model is expected to predict the correct value of the output.

Real-life examples of regression include predicting the value of stocks, the quality of wine,
or the market price of a house, as depicted in the following image:

Number of Bec
Square Foo

L ¢

Parameter Tuning

House pricing regressor

In the preceding image, the inputs are features that provide information that describes a
given house, while the output is the predicted value of the house.

Many types of models exist for carrying out classification and regression tasks — some of
them are described in the following subsection.

Supervised learning algorithms

As we mentioned previously, each supervised learning model consists of a set of internal
tunable parameters and an algorithm that tunes these parameters in an attempt to achieve
the required result.

Some common supervised learning models/algorithms include the following:

¢ Decision Trees: A family of algorithms that utilizes a tree-like graph, where
branching points represent decisions and the branches represent their
consequences.

¢ Random Forests: Algorithms that create a large number of decision trees during
the training phase and use a combination of their outputs.
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e Support Vector Machines: Algorithms that map the given inputs as points in
space so that the inputs that belong to separate categories are divided by the
largest possible gap.

e Artificial Neural Networks: Models that consist of multiple simple nodes, or
neurons, which can be interconnected in various ways. Each connection can have
a weight that controls the level of the signal that's carried from one neuron to the
next.

There are certain techniques that can be used to improve and enhance the performance of
such models. One interesting technique — feature selection — will be discussed in the next
section.

Feature selection in supervised learning

As we saw in the previous section, a supervised learning model receives a set of inputs,
called features, and maps them to a set of outputs. The assumption is that the information
described by the features is useful for determining the value of the corresponding outputs.
At first glance, it may seem that the more information we can use as input, the better our
chances of predicting the output(s) correctly. However, in many cases, the opposite holds
true; if some of the features we use are irrelevant or redundant, the consequence could be a
(sometimes significant) decrease in the accuracy of the models.

Feature selection is the process of selecting the most beneficial and essential set of features
out of the entire given set of features. Besides increasing the accuracy of the model, a
successful feature selection can provide the following advantages:

e The training times of the models are shorter.

¢ The resulting trained models are simpler and easier to interpret.

e The resulting models are likely to provide better generalization, that is, they
perform better with new input data that is dissimilar to the data that was used
for training.

When looking at methods to carry out feature selection, genetic algorithms are a natural
candidate. We will demonstrate how they can be applied to find the best features out of an
artificially generated dataset in the next section.
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Selecting the features for the Friedman-1
regression problem

The Friedman-1 regression problem, which was created by Friedman and Breiman,
describes a single output value, y, which is a function of five input values, xo..x,, and
randomly generated noise, according to the following formula:

y(xo, 1, @2, @3, 24) = 10 - sin(mw - g - 1) + 20(z2 — 0.5)2 + 10z3 + 5z4 + noise - N(0,1)

The input variables, x..x,, are independent, and uniformly distributed over the interval [0,
1]. The last component in the formula is the randomly generated noise. The noise is
normally distributed and multiplied by the constant noise, which determines its level.

In Python, the scikit-learn (sklearn) library provides us with the

make_friedmanl () function, which can be used to generate a dataset containing the
desired number of samples. Each of the samples consists of randomly

generated x..x, values and their corresponding calculated y value. The interesting part,
however, is that we can tell the function to add an arbitrary number of irrelevant input
variables to the five original ones by setting the n_features parameter to a value larger
than five. If, for example, we set the value of n_features to 15, we will get a dataset
containing the original five input variables (or features) that were used to generate the y
values according to the preceding formula and an additional 10 features that are completely
irrelevant to the output. This can be used, for example, to test the resilience of various
regression models on the noise and presence of irrelevant features in the dataset.

We can take advantage of this function to test the effectiveness of genetic algorithms as a
feature selection mechanism. In our test, we will use the make_friedmani () function to
create a dataset with 15 features and use the genetic algorithm to search for the subset of
features that provides the best performance. As a result, we expect the genetic algorithm to
pick the first five features and drop the rest, assuming that the model's accuracy is better
when only the relevant features are used as input. The fitness function of the genetic
algorithm will utilize a regression model that, for each potential solution — a subset of the
feature to use — will be trained using the dataset containing only the selected features.

As usual, we will start by choosing an appropriate representation for the solution, as
described in the next subsection.
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Solution representation

The objective of our algorithm is to find a subset of features that yield the best performance.
Therefore, a solution needs to indicate which features are chosen and which are dropped.
One obvious way to go about this is to represent each individual using a list of binary
values. Every entry in that list corresponds to one of the features in the dataset. A value of 1
represents selecting the corresponding feature, while a value of 0 means that the feature has
not been selected. This is very similar to the approach we used in the knapsack 0-1 problem
we described in chapter 4, Combinatorial Optimization.

The presence of each 0 in the solution will be translated into dropping the corresponding
feature's data column from the dataset, as we will see in the next subsection.

Python problem representation

To encapsulate the Friedman-1 feature selection problem, we've created a Python class
called FriedmaniTest. This class can be found in the friedman.py file, which is located
at https://github.com/PacktPublishing/Hands-On-Genetic-Algorithms-with—-Python/
blob/master/Chapter07/friedman.py.

The main parts of this class are as follows:
1. The __init__ () method of the class creates the dataset, as follows:

self.X, self.y =
datasets.make_friedmanl (n_samples=self.numSamples,
n_features=self.numFeatures,

noise=self.NOISE,
random_state=self.randomSeed)

2. Then, it divides the data into two subsets —a training set and a validation set
- using the scikit-learn model_selection.train_test_split () method:

self.X_train, self.X validation, self.y_train,

self.y_validation = \
model_selection.train_test_split(self.X, self.y,

test_size=self.VALIDATION_SIZE, random_state=self.randomSeed)
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Dividing the data to a test set and a validation set allows us to train the regression
model on the train set, where the correct prediction is given to the model for
training purposes, and then test it with the separate validation set, where the
correct predictions are not given to the model and are, instead, compared to the
predictions it produces. This way, we can test how well the model is able to
generalize, rather than memorize the training data.

3. Next, we create the regression model, which is of the Gradient Boosting
Regressor (GBR) type. This model creates an ensemble (or aggregation) of
decision trees during the training phase:

self.regressor =
GradientBoostingRegressor (random_state=self.randomSeed)

Note that we are passing the random seed along so that it can be used
internally by the regressor. This way, we can make sure the results that we
obtain are repeatable.

4. The getMSE () method of the class is used to determine the performance of our
gradient boosting regression model for a set of selected features. It accepts a list
of binary values corresponding to the features in the dataset — a value of 1
represents selecting the corresponding feature, while a value of 0 means that the
feature is dropped. The method then deletes the columns in the training and
validation sets that correspond to the unselected features:

zeroIndices = [i for 1, n in enumerate (zeroOnelList) if n == 0]
currentX_train = np.delete(self.X_ train, zerolIndices, 1)
currentX_validation = np.delete(self.X_validation, zeroIndices,
1)

5. The modified train set — containing only the selected features - is then used to
train the regressor, while the modified validation set is used to evaluate its
predictions:

self.regressor.fit (currentX_train, self.y_train)
prediction = self.regressor.predict (currentX_validation)
return mean_squared_error (self.y_validation, prediction)
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When

The metric that's used here to evaluate the regressor is called the mean square
error (MSE), which finds the average squared difference between the model's
predicted values and the actual values. A lower value of this measurement
indicates better performance of the regressor.

6. The main () method of the class creates an instance of the FriedmaniTest class
with 15 features. Then, it repeatedly uses the getMSE () method to evaluate the

performance of the regressor with the first n features, since 7 is incremented from
1to 15:

for n in range(l, len(test) + 1):
nFirstFeatures = [1] * n + [0] * (len(test) - n)

score = test.getMSE (nFirstFeatures)

running the main method, the results show that, as we add the first five features one

by one, the performance improves. However, afterward, each additional feature degrades
the performance of the regressor:

O J oo WwN e

first features: score = 47.553993
first features: score = 26.121143
first features: score = 18.509415
first features: score = 7.322589
first features: score = 6.702669
first features: score = 7.677197
first features: score = 11.614536
first features: score = 11.294010
first features: score = 10.858028
first features: score = 11.602919
first features: score = 15.017591
first features: score = 14.258221
first features: score = 15.274851
first features: score = 15.726690
first features: score = 17.187479
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This is further illustrated by the generated plot, showing the minimum MSE value where
the first five features are used:

MSE over Features Selected

8 g & &

MSE
N
(%3]

8

15

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n First Features

Plot of error values for the Friedman-1 regression problem

In the next subsection, we will find out if a genetic algorithm can successfully identify these
first five features.

Genetic algorithms solution

To identify the best set of features to be used for our regression test using a genetic
algorithm, we've created the Python program 01-solve-friedman.py, which is located
at https://github.com/PacktPublishing/Hands-On—-Genetic-Algorithms—-with—-Python/
blob/master/Chapter07/0l-solve-friedman.py.

As a reminder, the chromosome representation that's being used here is a list of integers
with the values of 0 or 1, denoting whether a feature should be used or dropped. This
makes our problem, from the point of view of the genetic algorithm, similar to the OneMax
problem or the knapsack 0-1 problem we solved previously. The difference is in the fitness
function returning the regression model's MSE, which is calculated within

the FriedmaniTest class.
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The following steps describe the main parts of our solution:

1. First, we need to create an instance of the FriedmanlTest class with the desired
parameters:

friedman = friedman.FriedmanlTest (NUM_OF_FEATURES,
NUM_OF_SAMPLES, RANDOM_SEED)

2. Since our goal is to minimize the MSE of the regression model, we define a single
objective, minimizing the fitness strategy:

creator.create ("FitnessMin", base.Fitness, weights=(-1.0,))

3. Since the solution is represented by a list of 0 or 1 integer values, we use the
following toolbox definitions to create the initial population:

toolbox.register ("zeroOrOne", random.randint, 0, 1)
toolbox.register ("individualCreator", tools.initRepeat,
creator.Individual, toolbox.zeroOrOne, len(friedman))
toolbox.register ("populationCreator", tools.initRepeat, list,
toolbox.individualCreator)

4. Then, we instruct the genetic algorithm to use the getMSE () method of
the FriedmaniTest instance for fitness evaluation:

def friedmanTestScore (individual) :
return friedman.getMSE (individual), # return a tuple

toolbox.register ("evaluate", friedmanTestScore)

5. As for the genetic operators, we use tournament selection with a tournament size
of 2 and crossover and mutation operators that are specialized for binary list

chromosomes:
toolbox.register ("select", tools.selTournament, tournsize=2)
toolbox.register ("mate", tools.cxTwoPoint)
toolbox.register ("mutate", tools.mutFlipBit,

indpb=1.0/1len (friedman))

6. In addition, we continue to use the elitist approach, where the hall of fame
(HOF) members — the current best individuals — are always passed untouched to
the next generation:

population, logbook = elitism.eaSimpleWithElitism(population, toolbox,
cxpb=P_CROSSOVER, mutpb=P_MUTATION, ngen=MAX_GENERATIONS,
stats=stats, halloffame=hof, verbose=True)

[13]
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By running the algorithm for 30 generations with a population size of 30, we get
the following outcome:

-—- Best Ever Individuwal = (21, 1, 1, 1, 1, 0, O, O, O, O, O, O, 0, 0O, O]
—— Best Ever Fitness = 6.702668910463287

This indicates that the first five features have been selected to provide the best MSE (about
6.7) for our test. Note that the genetic algorithm makes no assumptions about the set of
features that it was looking for, meaning it did not know that we are looking for a subset of
the first n features. It simply searched for the best possible subset of features.

In the next section, we will advance from using artificially generated data to an actual
dataset and utilize the genetic algorithm to select the best features for a classification
problem.

Selecting the features for the classification
Zoo dataset

The UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/index.

php) maintains over 350 datasets as a service to the machine learning community. These
datasets can be used for experimentation with various models and algorithms. A typical
dataset contains a number of features (inputs) and the desired output, in a form of columns,
with a description of their meaning.

In this section, we will use the UCI Zoo dataset (https://archive.ics.uci.edu/ml/
datasets/zoo). This dataset describes 101 different animals using the following 18 features:

No. |Feature Name Data Type
1 animal name Unique for each instance
2 hair Boolean

3 feathers Boolean

4 eggs Boolean

5 milk Boolean

6 airborne Boolean

7 aquatic Boolean

8 predator Boolean

9 toothed Boolean
10 backbone Boolean

[14]
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11 breathes Boolean

12 venomous Boolean

13 fins Boolean

14 legs Numeric (set of values {0,2,4,5,6,8})

15 tail Boolean

16 domestic Boolean

17 catsize Boolean

18 type Numeric (integer values in range [1,7])

Most features are boolean (value of 1 or 0), indicating the presence or absence of a certain
attribute, such as hair, fins, and so on. The first feature, animal name, is just to provide us
with some information and does not participate in the learning process.

This dataset is used for testing classification tasks, where the input features need to be
mapped into two or more categories/labels. In this dataset, the last feature

— called type — represents the category, and is used as the output value. In this dataset,
there are seven categories altogether. A type value of 5, for instance, represents an animal
category that includes frog, newt, and toad. To sum this up, a classification model trained
with this dataset will use features 2-17 (hair, feathers, fins, and so on) to predict the value of
feature 18 (animal type).

Once again, we want to use a genetic algorithm to select the features that will give us the
best predictions. Let's start by creating a Python class that represents a classifier that's been
trained with this dataset.

Python problem representation

To encapsulate the feature selection process for the Zoo dataset classification task, we've
created a Python class called Zoo. This class is contained in the zoo . py file, which is
located at nttps://github.com/PacktPublishing/Hands-On-Genetic-Algorithms-with-
Python/blob/master/Chapter07/zoo0.py.

The main parts of this class are highlighted as follows:

1. The __init__ () method of the class loads the Zoo dataset from the web while
skipping the first feature — animal name - as follows:

self.data = read_csv(self.DATASET_URL, header=None,
usecols=range (1, 18))

[15]
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2. Then, it separates the data to input features (first remaining 16 columns) and the
resulting category (last column):

self.X = self.data.iloc[:, 0:16]
self.y = self.data.iloc[:, 16]

3. Instead of just separating the data into a training set and a test set, like we did in
the previous section, we're using k-fold cross-validation. This means that the data is
split into k equal parts and the model is evaluated k times, each time using (k-1)
parts for training and the remaining part for testing (or validation). This is easy
to do in Python using the scikit-learn library's model_selection.KFold ()
method:

self.kfold = model_selection.KFold(n_splits=self.NUM_FOLDS,
random_state=self.randomSeed)

4. Next, we create a classification model based on a decision tree. This type of
classifier creates a tree structure during the training phase that splits the dataset
into smaller subsets, eventually resulting in a prediction:

self.classifier =
DecisionTreeClassifier (random_state=self.randomSeed)

Note that we are passing the random seed along so that it can be used
internally by the classifier. This way, we can make sure the results that are
obtained are repeatable.

5. The getMeanAccuracy () method of the class is used to evaluate the
performance of the classifier for a set of selected features. Similar to the
getMSE () method in the FriedmaniTest class, this method accepts a list of
binary values corresponding to the features in the dataset — a value of 1
represents selecting the corresponding feature, while a value of 0 means that the
feature is dropped. The method then drops the columns in the dataset that
correspond to the unselected features:

zeroIndices = [i for i1, n in enumerate(zeroOnelList) if n == 0]
currentX = self.X.drop(self.X.columns[zeroIndices], axis=1)

[16]
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6. This modified dataset — containing only the selected features — is then used to
perform the k-fold cross-validation process and determine the classifier's
performance over the data partitions. The value of k in our class is set to 5, so five
evaluations take place each time:

cv_results = model_selection.cross_val_score(self.classifier,
currentX, self.y, cv=self.kfold, scoring='accuracy')
return cv_results.mean ()

The metric that's being used here to evaluate the classifier is accuracy — the
portion of the cases that were classified correctly. An accuracy of 0.85, for
example, means that 85% of the cases were classified correctly. Since, in our case,
we train and evaluate the classifier k times, we use the average (mean) accuracy
value that was obtained over these evaluations.

7. The main () method of the class creates an instance of the Zoo class and
evaluates the classifier with all 16 features that are present using the all-
one solution representation:

allOnes = [1] * len(zoo)
print ("-— All features selected: ", allOnes, ", accuracy = ",
z00.getMeanAccuracy (allOnes))

When running the main method of the class, the printout shows that, when testing our
classifier with 5-fold cross-validation using all 16 features, the classification accuracy that's
achieved is about 91%:

-- All features selected: [21, 1, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1]
, accuracy = 0.9099999999999999

In the next subsection, we will attempt to improve the accuracy of the classifier by selecting
a subset of features from the dataset, instead of using all the features. We will use — you
guessed it — a genetic algorithm to select these features for us.

Genetic algorithms solution

To identify the best set of features to be used for our Zoo classification task using a genetic
algorithm, we've created the Python program 02-solve-zoo.py, which is located

at https://github.com/PacktPublishing/Hands-On-Genetic-Algorithms-with—-Python/
blob/master/Chapter07/02-solve-zo00.py.

As in the previous section, the chromosome representation that's being used here is a list of
integers with the values of 0 or 1, denoting whether a feature should be used or dropped.

[17]
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The following steps highlight the main parts of the program:

1. First, we need to create an instance of the zZoo class and pass our random seed
along for the sake of producing repeatable results:

z00 = z00.Zoo (RANDOM_SEED)

2. Since our goal is to maximize the accuracy of the classifier model, we define
a single objective, maximizing the fitness strategy:

creator.create ("FitnessMax", base.Fitness, weights=(1.0,))

3. Just like in the previous section, we use the following toolbox definitions to
create the initial population of individuals, each constructed as a list of 0 or 1
integer values:

toolbox.register ("zeroOrOne", random.randint, 0, 1)
toolbox.register ("individualCreator", tools.initRepeat,
creator.Individual, toolbox.zeroOrOne, len(zoo))
toolbox.register ("populationCreator", tools.initRepeat, list,
toolbox.individualCreator)

4. Then, we instruct the genetic algorithm to use the getMeanAccuracy () method
of the Zoo instance for fitness evaluation. To do this, we had to make two
modifications:

e We eliminated the possibility of no features being selected (all-zeros
individual) since our classifier will throw an exception in such a case.

e We added a small penalty for each feature being used to encourage the
selection of fewer features. The penalty value is very small (0.001), so it
only comes into play as a tie-breaker between two equally performing
classifiers, leading the algorithm to prefer the one that uses fewer
features:

def zooClassificationAccuracy (individual) :
numFeaturesUsed = sum(individual)
if numFeaturesUsed ==
return 0.0,

else:
accuracy = zoo.getMeanAccuracy (individual)
return accuracy - FEATURE_PENALTY_FACTOR *
numFeaturesUsed, # return a tuple

toolbox.register ("evaluate",
zooClassificationAccuracy)

[18]
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5. For the genetic operators, we again use tournament selection with a tournament
size of 2 and crossover and mutation operators that are specialized for binary list
chromosomes:

toolbox.register ("select", tools.selTournament, tournsize=2)
toolbox.register ("mate", tools.cxTwoPoint)

toolbox.register ("mutate", tools.mutFlipBit,

indpb=1.0/len (zo0o0))

6. And once again, we continue to use the elitist approach, where HOF members
— the current best individuals — are always passed untouched to the next
generation:

population, logbook = elitism.eaSimpleWithElitism(population,
toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
ngen=MAX_GENERATIONS, stats=stats, halloffame=hof,
verbose=True)

7. At the end of the run, we print out all the members of the HOF so that we can see
the top results that were found by the algorithm. We print both the fitness value,
which includes the penalty for the number of features, and the actual accuracy
value:

print ("- Best solutions are:")
for i in range (HALL_OF_FAME_SIZE) :
print(i, ": ", hof.items[i], ", fitness = ",
hof.items[i].fitness.values[0],
", accuracy = ", zoo.getMeanAccuracy (hof.items[i]),
", features = ", sum(hof.items[i]))

By running the algorithm for 50 generations with a population size of 50 and HOF size of 5,
we get the following outcome:

- Best solutions are:

. 0, 2, 0, ¢, 1, 0, 0,0 0, 1, 0, 0, 1, 0, 1, 0, 01 , fitness = 0.964 ,
accuracy = 0.97 , features = 6
+: (0, 1, 0, 2, 2, 0, 0,0 0, 2, O, O, 1, O, 1, O, 11 , fitness = 0.963 ,
accuracy = 0.97 , features = 7
2: [0, 1, O, 21, 1, O, O, O, 1, O, 2, 1, O, 1, O, O] , fitness = 0.963 ,
accuracy = 0.97 , features = 7
3. [, 1, o0, 1,1, 0, 0, 0, 1, 0, O, 2, 0, 1, O, 0] , fitness = 0.963 ,
accuracy = 0.97 , features = 7
4 : (0, 2, 0, 2, 2, 0, 0, O, 1, O, O, 1, O, 1, 1, O] , fitness = 0.963 ,
accuracy = 0.97 , features = 7

[19]
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These results indicate that all five top solutions achieved an accuracy value of 97%, using
either six or seven features out of the available 16. Thanks to the penalty factor on a number
of features, the top solution is the set of six features, which are as follows:

o feathers

e milk

e airborne

backbone

e fins

e tail

In conclusion, by selecting these particular features out of the 16 given in the dataset, not
only did we reduce the dimensionality of the problem, but we were also able to improve
our model accuracy from 91% to 97%. If this does not seem like a large enhancement at first
glance, think of it as reducing the error rate from 9% to 3% — a very significant
improvement in terms of classification performance.

Summary

In this chapter, you were introduced to machine learning and the two main types of
supervised machine learning tasks — regression and classification. Then, you were
presented with the potential benefits of feature selection on the performance of the models
carrying out these tasks. At the heart of this chapter were two demonstrations of how
genetic algorithms can be utilized to enhance the performance of such models via feature
selection. In the first case, we pinpointed the genuine features that were generated by the
Friedman-1 Test regression problem, while, in the other case, we selected the most
beneficial features of the Zoo classification dataset.

In the next chapter, we will look at another possible way of enhancing the performance
of supervised machine learning models, namely hyperparameter tuning.

[20]
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Further reading

For more information about the topics that were covered in this chapter, please refer to the
following resources:

Applied Supervised Learning with Python, Benjamin Johnston and Ishita Mathur, April
26,2019

Feature Engineering Made Easy, Sinan Ozdemir and Divya Susarla, January 22, 2018
Feature selection for classification, M.Dash and H.Liu, 1997: https://doi.org/
10.1016/51088-467X(97)00008-5

UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/index.
php

[21]
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