
CHAPTER 3
The Test Engineer

Testability and long-term viability of test automation infrastructure is the
purview of the Software Engineer in Test (SET). The Test Engineer (TE)
plays a related but different role where the focus is on user impact and risk
to the overall mission of the software product. Like most technical roles at
Google, there is some coding involved, but the TE role is by far the most
broad of all the engineers. He contributes to the product, but many of the
tasks a TE takes on require no coding.1

A User-Facing Test Role

In the prior chapter, we introduced the TE as a “user-developer” and this is
not a concept to take lightly. The idea that all engineers on a product team
fit the mold of a developer is an important part of keeping all stakeholders
on an equal footing. At companies like Google where honoring “the writing
of code” is such an important part of our culture, TEs need to be involved
as engineers to remain first-class citizens. The Google TE is a mix of techni-
cal skills that developers respect and a user facing focus that keeps develop-
ers in check. Talk about a split personality!

1 This is a general view. Many TEs perform work more akin to the SET role and write a lot 
of code. Some TEs perform a role more closely aligned with a release engineer and write 
little code.

TEs need to be involved as engineers to remain first-class citizens. The Google TE
is a mix of technical skills that developers respect and a user facing focus that
keeps developers in check.

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



The TE job description is the hardest to nail down as one size definitely
does not fit all. TEs are meant as an overseer of all things quality as the vari-
ous build targets come together and ultimately comprise the entire product.
As such, most TEs get involved in some of this lower-level work where
another set of eyes and more engineering expertise is needed. It’s a matter
of risk: TEs find and contribute to the riskiest areas of the software in what-
ever manner makes the most sense for that particular product. If SET work
is the most valuable, then that’s what a TE does; if code reviews are the
most valuable, then so be it. If the test infrastructure is lacking, then it gets
some TE attention. 

These same TEs can then lead exploratory testing sessions at some
other point in a project or manage a dogfood or beta testing effort.
Sometimes this is time-driven as early phase work means far more 
SET-oriented tasks are needed, and later in the cycle, TE-oriented work is
prevalent. Other cases are the personal choice of the TEs involved and there
are a number of cases where engineers convert from one of these roles to
another. There are no absolutes. What we describe in the following section
is essentially the ideal case.

The Life of a TE

The TE is a newer role at Google than either Software Engineers (SWEs) or
SETs. As such, it is a role still in the process of being defined. The current
generation of Google TEs is blazing a trail that will guide the next genera-
tion of new hires for this role. Here we present the latest emerging TE
processes at Google. 

Not all products require the attention of a TE. Experimental efforts and
early-stage products without a well defined mission or user story are cer-
tainly projects that won’t get a lot of (or any) TE attention. If the product
stands a good chance of being cancelled (in the sense that as a proof of con-
cept, it fails to pass muster) or has yet to engage users or have a well
defined set of features, testing is largely something that should be done by
the people writing the code. 

Even if it is clear that a product is going to get shipped, TEs often have
little testing to do early in the development cycle when features are still in
flux and the final feature list and scope are undetermined. Overinvesting in
test engineering too early, especially if SETs are already deeply engaged,
can mean wasted effort. Testing collateral that gets developed too early
risks being cast aside or, worse, maintained without adding value. Like-
wise, early test planning requires fewer TEs than later-cycle exploratory
testing when the product is close to final form and the hunt for missed bugs
has a greater urgency. 

76 How Google Tests Software

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



The Test Engineer 77

The trick in staffing a project with TEs has to do with risk and return on
investment. Risk to the customer and to the enterprise means more testing
effort and requires more TEs, but that effort needs to be in proportion with
the potential return. We need the right number of TEs and we need them to
engage at the right time and with the right impact. 

After they are engaged, TEs do not have to start from scratch. There is a
great deal of test engineering and quality-oriented work performed by
SWEs and SETs, which becomes the starting point for additional TE work.
The initial engagement of the TE is to decide things such as:

• Where are the weak points in the software?

• What are the security, privacy, performance, reliability, usability, com-
patibility, globalization, or other concerns?

• Do all the primary user scenarios work as expected? Do they work for
all international audiences?

• Does the product interoperate with other products (hardware and soft-
ware)?

• In the event of a problem, how good are the diagnostics?

Of course these are only a subset. All of this combines to speak to the
risk profile of releasing the software in question. TEs don’t necessarily do
all of this work, but they ensure that it gets done and they leverage the
work of others in assessing where additional work is required. Ultimately,
TEs are paid to protect users and the business from bad design, confusing
UX, functional bugs, security and privacy issues, and so on. At Google, TEs
are the only people on a team whose full-time job is to look at the product
or service holistically for weak points. As such, the life of a TE is much less
prescriptive and formalized than that of an SET. TEs are asked to help on
projects in all stages of readiness: everything from the idea stage to version
8 or even watching over a deprecated or “mothballed” project. Often, a sin-
gle TE even spans multiple projects, particularly those TEs with specialty
skill sets such as security, privacy, or internationalization. 

Clearly, the work of a TE varies greatly depending on the project. Some
TEs spend much of their time programming, but with more of a focus on
medium and large tests (such as end-to-end user scenarios) rather than
small tests. Other TEs take existing code and designs to determine failure
modes and look for errors that can cause those failures. In such a role, a TE
might modify code but not create it from scratch. TEs must be more system-
atic and thorough in their test planning and completeness with a focus on
the actual usage and systemwide experience. TEs excel at dealing with

TEs often have little to do early in the development cycle when features are still in
flux and the final feature list and scope are undetermined.

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



ambiguity in requirements and at reasoning and communicating about
fuzzy problems.

Successful TEs accomplish all this while navigating the sensitivities
and, sometimes, strong personalities of the development and product team
members. When weak points are found, TEs happily break the software and
drive to get these issues resolved with the SWEs, PMs, and SETs. TEs are
generally some of the most well known people on a team because of the
breadth of interactions their jobs require. 

Such a job description can seem like a frightening prospect given the
mix of technical skill, leadership, and deep product understanding
required. Indeed, without proper guidance, it is a role in which many
would expect to fail. However, at Google, a strong community of TEs has
emerged to counter this. Of all job functions, the TE role is perhaps the best
peer-supported role in the company. The insight and leadership required to
perform the TE job successfully means that many of the top test managers
in the company come from the TE ranks.

78 How Google Tests Software

The insight and leadership required to perform the TE job successfully means that
many of the top test managers in the company come from the TE ranks.

There is fluidity to the work of a Google TE that belies any prescriptive
process for engagement. TEs can enter a project at any point and must
assess the state of the project, code, design, and users quickly and decide
what to focus on first. If the project is just getting started, test planning is
often the first order of business. Sometimes TEs are pulled in late in the
cycle to evaluate whether a project is ready for ship or if there are any major
issues before an early “beta” goes out. If they are brought into a newly
acquired application or one in which they have little prior experience, they
often start doing some exploratory testing with little or no planning.
Sometimes projects haven’t been released for quite a while and just need
some touchups, security fixes, or UI updates—calling for an even different
approach. 

One size rarely fits all for TEs at Google. We often describe a TE’s work
as “starting in the middle” in that a TE has to be flexible and integrate
quickly into a product team’s culture and current state. If it’s too late for a
test plan, don’t build one. If a project needs tests more than anything else,
build just enough of a plan to guide that activity. Starting at “the begin-
ning” according to some testing dogma is simply not practical. 

Following is the general set of practices we prescribe for TEs:

• Test planning and risk analysis

• Review specs, designs, code, and existing tests

• Exploratory testing

• User scenarios

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



• Test case creation

• Executing test cases

• Crowd sourcing

• Usage metrics

• User feedback

Of course, TEs with a strong personality and excellent communication
skills are the ones who do all these things to maximum impact. 

Test Planning

Developers have a key advantage over testers in that the artifact they work
on is one that everyone cares about. Developers deal with code and because
that code becomes the application that users covet and that makes profit for
the company, it is by definition the most important document created dur-
ing project execution. 

Testers, on the other hand, deal with documents and artifacts of a far
more temporal nature. In the early phases of a project, testers write test
plans; later, they create and execute test cases and create bug reports. Still,
later they write coverage reports and collect data about user satisfaction
and software quality. After the software is released and is successful (or
not), few people ask about testing artifacts. If the software is well loved,
people take the testing for granted. If the software is poor, people might
question the testing, but it is doubtful that anyone would want to actually
see it. 

Testers cannot afford to be too egotistical about test documentation. In
the throes of the coding, reviewing, building, testing, rinsing, and repeating
cycle that is software development, there is little time to sit around and
admire a test plan. Poor test cases rarely achieve enough attention to be
improved; they simply get thrown out in favor of those that are better. The
attention is focused on the growing codebase and as the only artifact that
actually matters, this is as it should be. 

As test documentation goes, test plans have the briefest actual lifespan
of any test artifact.2 Early in a project, there is a push to write a test plan (see
Appendix A, “Chrome OS Test Plan,” for an early Chrome OS test plan).
Indeed, there is often an insistence among project managers that a test plan
must exist and that writing it is a milestone of some importance. But, once
such a plan is written, it is often hard to get any of those same managers to
take reviewing and updating it seriously. The test plan becomes a beloved
stuffed animal in the hands of a distracted child. We want it to be there at
all times. We drag it around from place to place without ever giving it any
real attention. We only scream when it gets taken away. 

The Test Engineer 79

2 Clearly in the event a customer negotiates the development of a test plan or some govern-
ment regulation requires it, the flexibility we talk about here disappears. There are some test
plans that have to be written and kept up to date!

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



Test plans are the first testing artifact created and the first one to die of
neglect. At some early point in a project, the test plan represents the actual
software as it is intended to be written but unless that test plan is tended
constantly, it soon becomes out of date as new code is added, features veer
from their preplanned vision, and designs that looked good on paper are re-
evaluated as they are implemented and meet feedback from users.
Maintaining a test plan through all these planned and unplanned changes
is a lot of work and only worthwhile if the test plan is regularly consulted
by a large percentage of the projects’ stakeholders. 

80 How Google Tests Software

Test plans are the first testing artifact created and the first one to die of neglect.

This latter point is the real killer of the idea of test planning: How much
does a test plan actually drive testing activity throughout the entire lifecycle
of a product? Do testers continually consult it as they divvy up the features
among them so as to divide and conquer the app? Do developers insist the
test plan be updated as they add and modify functionality? Do develop-
ment managers keep a copy open on their desktop as they manage their to-
do list? How often does a test manager refer to the contents of a test plan in
status and progress meetings? If the test plan is actually important, all of
these things would be happening every day. 

Ideally, the test plan should play such a central role during project exe-
cution. Ideally, it should be a document that lives as the software lives, get-
ting updates as the codebase gets updates and representing the product as
it currently exists, not as it existed at the start of a project. Ideally, it should
be useful for getting new engineers up to speed as they join a project
already in progress. 

That’s the ideal situation. It’s also a situation few testers have actually
achieved here at Google or anywhere else for that matter. 

Here are some features we want in a test plan:

• It is always up to date. 

• It describes the intent of the software and why it will be loved by its
users.

• It contains a snapshot of how the software is structured and the names
of the various components and features. 

• It describes what the software should do and summaries how it 
will do it. 

From a purely testing point of view, we have to worry about the test
plan being relevant while not making its care and feeding such a burden
that it becomes more work than it is worth:

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



• It cannot take long to create and must be readily modifiable.

• It should describe what must be tested. 
• It should be useful during testing to help determine progress and cov-

erage gaps. 

At Google, the history of test planning is much the same as other com-
panies we’ve experienced. Test planning was a process determined by the
people doing it and executed according to local (meaning the individual
team) custom. Some teams wrote test plans in Google Docs (text documents
and spreadsheets), shared with their engineering team but not in a central
repository. Other teams linked their test plans on their product’s home
page. Still others added them to the internal Google Sites pages for their
projects or linked to them from the engineering design documents and
internal wikis. A few teams even used Microsoft Word documents, sent
around in emails to the team in a proper old-school way. Some teams had
no test plans at all, just test cases whose sum total, we must suppose, repre-
sented the plan. 

The review path for these plans was opaque and it was hard to deter-
mine the authors and reviewers. Far too many of the test plans had a time
and date stamp that made it all too clear that they had been written and
long forgotten like the sell-by date on that old jar of jam in the back of the
refrigerator. It must have been important to someone at some time, but that
time has passed.

There was a proposal floated around Google to create a central reposi-
tory and template for all product test plans. This was an interesting idea
that has been tried elsewhere, but one clearly contrary to Google’s inher-
ently distributed and self-governed nature where “states rights” was the
norm and big government a concept that brought derision. 

Enter ACC (Attribute Component Capability) analysis, a process pulled
together from the best practices of a number of Google test teams and pio-
neered by the authors and several colleagues in various product areas. ACC
has passed its early adopter’s phase and is being exported to other compa-
nies and enjoying the attention to tool developers who automate it under
the “Google Test Analytics” label. 

ACC has the following guiding principles:

• Avoid prose and favor bulleted lists. Not all testers wish to be novel-
ists or possess the skill set to adequately capture in prose a product’s
purpose in life or its testing needs. Prose can be hard to read and is eas-
ily misinterpreted. Just the facts please!

• Don’t bother selling. A test plan is not a marketing document or a
place to talk about how important a market niche the product satisfies
or how cool it is. Test plans aren’t for customers or analysts; they are for
engineers.

The Test Engineer 81

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



• No fluff. There is no length expectation for a test plan. Test plans are
not high school term projects where length matters. Bigger is not better.
The size of the plan is related to the size of the testing problem, not the
propensity of the author to write. 

• If it isn’t important and actionable, don’t put it in the plan. Not a sin-
gle word in the plan should garner a “don’t care” reaction from a
potential stakeholder. 

• Make it flow. Each section of the test plan should be an expansion of
earlier sections so that one can stop reading at anytime and have a pic-
ture of the product’s functionality in his head. If the reader wants more
detail, he can continue reading. 

• Guide a planner’s thinking. A good planning process helps a planner
think through functionality and test needs and logically leads from
higher-level concepts into lower-level details that can be directly imple-
mented.

• The outcome should be test cases. By the time the plan is completed, it
should clearly describe not just what testing needs to be done but that it
should also make the writing of test cases obvious. A plan that doesn’t
lead directly to tests is a waste of time. 

82 How Google Tests Software

A plan that doesn’t lead directly to tests is a waste of time.

This last point is crucial: If the test plan does not describe in enough
detail what test cases need to be written, then it hasn’t served its primary
purpose of helping us test the application we are building. The planning of
tests should put us in a position to know what tests need to be written. You
are finished planning when you are at exactly that spot: You know what
tests you need to write. 

ACC accomplishes this by guiding the planner through three views of a
product corresponding to 1) adjectives and adverbs that describe the prod-
uct’s purpose and goals, 2) nouns that identify the various parts and fea-
tures of the product, and 3) verbs that indicate what the product actually
does. It follows that testing allows us to test that those capabilities work
and the components as written satisfy the application’s purpose and goals. 

A is for “Attribute”

When starting test planning or ACC, it is important to first identify why the
product is important to users and to the business. Why are we building this
thing? What core value does it deliver? Why is it interesting to customers?
Remember, we’re not looking to either justify or explain these things, only
to label them. Presumably the PMs and product planners, or developers,

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



have done their job of coming up with a product that matters in the market-
place. From a testing perspective, we just need to capture and label these
things so we can ensure they are accounted for when we test it. 

We document the core values in a three-step process called Attribute,
Component, Capability analysis and we do so in that order, with attributes
as the first target. 

Attributes are the adjectives of the system. They are the qualities and
characteristics that promote the product and distinguish it from the compe-
tition. In a way, they are the reasons people would choose to use the prod-
uct over a competitor. Chrome, for example, is held to be fast, secure, stable,
and elegant, and these are the attributes we try to document in the ACC.
Looking ahead, we want to get to a point where we can attach test cases to
these labels so that we know how much testing we have done to show that
Chrome is fast, secure, and so on. 

The Test Engineer 83

Attributes are the adjectives of the system. They are the qualities and characteris-
tics that promote the product and distinguish it from the competition. Attributes
are the reasons people would choose to use the product over a competitor.

Typically, a product manager has a hand in narrowing down the list of
attributes for the system. Testers often get this list by reading the product
requirements document, the vision and mission statement of the team, or
even by simply listening to a sales guy describe the system to a prospective
customer. Indeed, we find at Google that salespeople and product evangel-
ists are an excellent source of attributes. Just imagine back-of-the-box adver-
tising or think about how the product would be pitched on QVC, and you
can get the right mindset to list the attributes.

Some tips on coming up with attributes for your own projects:

• Keep it simple. If it takes more than an hour or two, you are spending
too long on this step.

• Keep it accurate. Make sure it comes from a document or marketing
information that your team already accepts as truth. 

• Keep it moving. Don’t worry if you missed something—if it’s not obvi-
ous later, it probably wasn’t that important anyway.

• Keep it short. No more than a dozen is a good target. We boiled an
operating system down to 12 key attributes (see Figure 3.1), and in ret-
rospect, we should have shortened that list to 8 or 9.

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



Attributes are used to figure out what the product does to support the
core reasons for the product’s existence and to surface these reasons to
testers so they can be aware of how the testing they do impacts the applica-
tion’s ultimate reason for existence. 

As an example, consider the attributes for a product called Google Sites,
which is a freely available application for building a shared website for
some open or closed community. Sites, as you’ll find with many end-user
applications, is kind enough to provide most of its attributes for you in its
own documentation, as shown in Figure 3.2. 

84 How Google Tests Software

FIGURE 3.1 Original Chrome risk analysis.

Note
Some figures in this chapter are representational and are not intended to be read 
in detail.

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



Indeed, most applications that have some sort of Getting Started page
or sales-oriented literature often do the work of identifying attributes for
you. If they do not, then simply talking to a salesperson, or better yet, sim-
ply watching a sales call or demo, gets you the information you need. 

Attributes are there for the taking. If you have trouble enumerating
them in anything more than a few minutes, then you do not understand
your product well enough to be an effective tester. Learn your product and
listing its attributes becomes a matter of a few minutes of work. 

The Test Engineer 85

FIGURE 3.2 Welcome to Google Sites.

If you have trouble enumerating attributes in anything more than a few minutes,
then you do not understand your product well enough to be an effective tester.

At Google, we use any number of tools for documenting risk; from doc-
uments to spreadsheets to a custom tool built by some enterprising engi-
neers called Google Test Analytics (GTA). It doesn’t really matter what you
use, just that you get them all written down (see Figure 3.3).

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



C is for “Component”

Components are the nouns of the system and the next target of enumera-
tion after the attributes are complete. Components are the building blocks
that together constitute the system in question. They are the shopping cart
and the checkout feature for an online store. They are the formatting and
printing features of a word processor. They are the core chunks of code that
make the software what it is. Indeed, they are the very things that testers
are tasked with testing! 

86 How Google Tests Software

FIGURE 3.3 Attributes for Google Sites as documented in GTA.

Components are the building blocks that together constitute the system in ques-
tion. They are the core components and chunks of code that make the software
what it is.

Components are generally easy to identify and often already cast in a
design document somewhere. For large systems, they are the big boxes in
an architectural diagram and often appear in labels in bug databases or
called out explicitly in project pages and documentation. For smaller proj-
ects, they are the classes and objects in the code. In every case, just go and
ask each developer: “What component are you working on?” and you will
get the list without having to do much else. 

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 



As with attributes, the level of detail in identifying components of the
product is critical. Too much detail and it becomes overwhelming and pro-
vides diminishing returns. Too little detail, and there’s simply no reason to
bother in the first place. Keep the list small; 10 is good and 20 is too many
unless the system is very large. It’s okay to leave minor things out. If they
are minor, then they are part of another component or they don’t really
matter enough to the end user for us to focus on them. 

Indeed, for both the attributes and the components, spending minutes
tallying them should suffice. If you are struggling coming up with compo-
nents, then you seriously lack familiarity with your product and you should
spend some time using it to get to the level of a power user quickly. Any
actual power user should be able to list attributes immediately and any proj-
ect insider with access to the source code and its documentation should be
able to list the components quickly as well. Clearly we believe it is important
for testers to be both power users and, obviously, project insiders. 

Finally, don’t worry about completeness. The whole ACC process is
based on doing something quick and then iterating as you go. If you miss
an attribute, you might discover it as you are listing the components. Once
you get to the capability portion, which is described next, you should shake
out any attributes or components you missed earlier. 

The components for Google Sites appear in Figure 3.4. 

The Test Engineer 87

FIGURE 3.4 Components for Google Sites as documented in GTA.

“How Google Tests Software”, Whittaker/Arbon/Carollo, Copyright 2012 Pearson Education, Inc. 


