
 Transition to Microservices and DevOps to Transform your
Software Effectiveness

Together, microservices and Docker containers can bring
unprecedented agility and scalability to application
development and deployment—especially in large,
complex projects where speed is crucial but small errors
can be disastrous. In Microservices and
Containers, Parminder Singh Kocher demonstrates why
and how these technologies can help you build, deploy,
manage, and scale industrial-strength applications.

Learn how to leverage microservices and Docker to drive
exponential improvements in DevOps effectiveness, on-
demand scalability, application performance, time-to-
market, code reuse, and application reliability. Kocher also
offers detailed guidance and a complete roadmap for
transitioning from monolithic architectures, and an
in-depth case study walking through the migration of an
enterprise-class SOA system.

 Understand how microservices enable you to organize
applications into standalone components that are
easier to manage, update, and scale

 Decide whether microservices and containers are
worth your investment, and manage the
organizational learning curve associated with them

 Apply best practices for interprocess communication
among microservices

 Migrate monolithic systems in an orderly fashion
 Understand Docker containers, installation, and

interfaces
 Network, orchestrate, and manage Docker containers

effectively
 Use Docker to maximize scalability in microservices-

based applications

ORDER & SAVE

SAVE 35% WHEN YOU ORDER
from informit.com/kocher and enter the
code INFOQ during checkout

FREE US SHIPPING on print books

Major eBook Formats

Only InformIT offers PDF, EPUB, & MOBI
together for one price

OTHER AVAILABILITY

Through O’Reilly Safari subscription service

Booksellers and online retailers including
Amazon/Kindle store and
Barnes and Noble/bn.com

Parminder Kocher is a lifelong technology learner with
two decades of hands-on experience in building
enterprise-grade software systems. He started at Cisco
Systems in 2005 managing the Remote Management
Service (RMS) platform, and has since worked as an
innovation evangelist leading multiple software groups.
Currently, he is engineering director for Cisco Networking
Academy platform, where he leads the engineering teams
responsible for developing the Academy’s next-gen
platform.

Available March 30, 2018

Microservices and
Containers

Parminder Kocher

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Cape Town • Dubai • London • Madrid • Milan
Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

M00_Kocher_FM_pi-xviii.indd 3 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned
.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017963682

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-459838-3
ISBN-10: 0-13-459838-5

1 18

M00_Kocher_FM_pi-xviii.indd 4 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

vii

Contents

Preface . xiii

Acknowledgments . xv

About the Author . xvii

Part I: Microservices . 1

Chapter 1: An Introduction to Microservices . 3

What Are Microservices? . 3
Modular Architecture . 8
Other Advantages of Microservices . 9
Disadvantages of Microservices . 11

Chapter 2: Switching to Microservices . 13

Fatigues and Attributes . 14
Learning Curve for the Organization . 15
Business Case for Microservices . 17
Cost Components . 18

Chapter 3: Interprocess Communication . 23

Types of Interactions . 23
Preparing to Write Web Services . 24
Microservice Maintenance . 25
Discovery Service . 26

API Gateway . 27
Service Registry . 27

Putting It All Together . 28

Chapter 4: Migrating and Implementing Microservices 33

The Need for Transition . 33
Creating a New Application with Microservices 35

Organization Readiness . 36
Services-Based Approach . 36

M00_Kocher_FM_pi-xviii.indd 7 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Contentsviii

Interprocess (Service-to-Service) Communication 37
Technology Selection . 37
Implementation . 38
Deployment . 39
Operations . 40

Migrating a Monolithic Application to Microservices 40
Microservices Criteria . 42
Rearchitecting the Services . 44

A Hybrid Approach . 45

Part II: Containers . 47

Chapter 5: Docker Containers . 49

Virtual Machines . 50
Containers . 52
Docker Architecture and Components . 54
The Power of Docker: A Simple Example . 57

Chapter 6: Docker Installation . 61

Installing Docker on Mac OS X . 61
Installing Docker on Windows . 66
Installing Docker on Ubuntu Linux . 68

Chapter 7: Docker Interface . 73

Key Docker Commands . 73
Docker Search . 73
Docker Pull . 75
Docker Images . 76
Docker RMI . 77
Docker Run . 77
Docker ps . 79
Docker Logs . 80
Docker Restart . 85
Docker Attach . 85
Docker Remove . 86
Docker Inspect . 87

Build-Related Docker Commands . 89
Docker Exec . 89
Docker Rename . 90
Docker Copy . 91

M00_Kocher_FM_pi-xviii.indd 8 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Contents ix

Docker Pause/Unpause . 92
Docker Create . 94
Docker Commit . 94
Docker Diff . 95

Dockerfile . 95
MySQL Dockerfile . 96

Docker Compose . 100

Chapter 8: Containers Networking . 105

Key Linux Concepts . 105
Linking . 106
Default Options . 110

None . 110
Host . 111
Bridge . 113

Custom Networks . 116
Custom Bridge Network Driver . 117
Overlay Network Driver . 119
Underlay Network Driver or Macvlan 121

Chapter 9: Container Orchestration . 123

Kubernetes . 123
Kubectl . 124
Master Node . 124
Worker Nodes . 127
Example: Kubernetes Cluster . 128

Apache Mesos and Marathon . 129
Mesos Master . 130
Agents . 130
Frameworks . 131
Example: Marathon Framework . 131

Docker Swarm . 132
Nodes . 132
Services . 133
Task . 133
Example: Swarm Cluster . 133
Service Discovery . 136
Service Registry . 139

M00_Kocher_FM_pi-xviii.indd 9 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Contentsx

Chapter 10: Containers Management . 143

Monitoring . 143
Logging . 144
Metrics Collection . 147

docker stats . 148
APIs . 149
cAdvisor . 149

Cluster-wide Monitoring Tools . 150
Heapster . 150
Prometheus . 151
Step 1: Running Prometheus . 152
Step 2: Adding Node Exporter and cAdvisor 155
Step 3: Adding Targets . 156
Step 4: Bringing Up the User Interface: Grafana 157
Step 5: Viewing the Stats . 160
Step 6: Integrating the Alertmanager 165

Part III: Hands-On Project—Putting Learning
into Practice . 169

Chapter 11: Case Study: Monolithic Helpdesk Application 171

Helpdesk Application Overview . 171
Application Architecture . 172

Authentication, Interceptor, and Authorization 173
Account Management . 175
Ticketing . 178
Product Catalog . 181
Appointments . 184
Message Board . 186
Search . 189

Building the Application . 190
Setting Up Eclipse . 190
Building the Application . 193
Deploying and Configuring . 198

New Requirements and Bug Fixes . 200

Chapter 12: Case Study: Migration to Microservices 203

Planning for Migration . 203
Applying Microservices Criteria . 205

M00_Kocher_FM_pi-xviii.indd 10 05/02/18 2:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Contents xi

Conversion Summary . 206
Impact on Architecture . 207

Converting to Microservices . 207
Product Catalog . 208
Ticketing . 211
Search . 211

Application Build and Deployment . 212
Code Setup . 213
Building the Microservices . 213
Deploying and Configuring . 213

New Requirements and Bug Fixes . 217

Chapter 13: Case Study: Containerizing a Helpdesk Application 221

Containerizing Microservices . 221
Listing Dependencies . 222
Build Binaries and WAR files . 222
Creating a Docker Image . 222
Building the Docker Image . 226
DC/OS Cluster Setup on AWS . 227

Deploying the Catalog Microservice . 235
Submitting a Task to Marathon . 236
Inspecting and Scaling the Service . 239
Accessing the Service . 245

Updating the Monolithic Application . 246

Conclusion . 247

What Is DevOps? . 247
Only the Beginning . 250

Appendix A: Helpdesk Application Flow . 251

Administrator Flows . 252
Login . 252
Administration and Supported Products 253

Customer Flows . 255
My Products . 255
Create an Incident . 256
View Incident . 256
Message Board . 257

M00_Kocher_FM_pi-xviii.indd 11 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Contentsxii

Make Appointment . 258
Search . 259
My Profile . 259

Support Desk Engineer Flows . 260
View All Tickets . 260
View Tickets . 261

Appendix B: Installing the Solr Search Engine . 263

Prerequisites . 263
Installation Steps . 263
Configuring Solr for Simple Data Import . 265

Index . 267

M00_Kocher_FM_pi-xviii.indd 12 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

xiii

Preface

As always, the technology sector is in the midst of momentous transitions—the Internet
of things, software-enabled networking, and software as a service (SaaS), to name but a
few. Because of these innovations, there is a large demand for platforms and architec-
tures that can improve the process of application development and deployment. Com-
panies of many sizes now require frameworks and architectures that can simplify their
applications’ update processes, allowing their latest versions to go to market more fre-
quently without adding undue overhead to the development and deployment teams.

This transition, like many of its cousins, is still young, yet many technologies and
frameworks in the space have already come and gone. The winners remain standing,
however, continuing to improve the world’s software by allowing its developers—
us—to create new applications and update existing ones with more agility than ever
before. Two such winners? Microservices and containers, red-hot topics that, in my
opinion, also possess staying power. Compared to the monolithic approach, the most
common way of developing and deploying applications, microservices simplify those
processes, especially with large projects that require multiple teams and increasingly
long code. In such cases, even a small change in the code can cause serious delays.
Microservices can handle today’s large codes by incorporating agility and scalability
into application development and deployment, all within a proven paradigm.

That’s where this book comes in. When I first started learning about microser-
vices, there were several valuable online resources (in particular, I recommend the
websites microservices.io, by Chris Richardson, and martinfowler.com, by James
Lewis and Martin Fowler), but I could not find many books that systematically built
a case for why a CTO or director of an engineering team should (or should not)
make the transition to microservices. There was a clear gap in the market; the more I
mastered the subject matter, the more I thought, “Why can’t I be the one to fill that
gap?” Soon I was brainstorming ideas for a book of my own.

Is This Book for You?

I wrote this book with two audiences in mind. The first group includes students,
designers, and architects with experience in software and systems engineering.
Although you might be familiar with microservices and/or containers, this is proba-
bly your first book dedicated entirely to them. It should provide you not only with a

M00_Kocher_FM_pi-xviii.indd 13 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Prefacexiv

comprehensive overview on the subjects but also with enough information and anal-
ysis to help you decide when—and when not—to utilize these technologies. Those of
you who already have hands-on experience with microservices and/or containers
may want to skim through Parts I and II and dive straight into Part III, which pre-
sents a full-fledged service desk example, written by following the standard
 service-oriented architectures (SOA) methodologies. This case study discusses how
one such application’s architecture can be converted to a microservices-based archi-
tecture as well as how Docker containers fit into the picture. I think this deep dive
under the hood will be a real treat and ultimately pique your interest enough to delve
into the world of microservices and containers yourself.

My other target readers are non-programmers coming at the topic from a busi-
ness perspective—executives or project managers interested in learning the basics.
Perhaps you read an intriguing blog post about microservices. Could that be the
solution your team has been searching for but you couldn’t seem to find a good
 follow-up book? Maybe you’ve overheard the engineers discussing Docker contain-
ers and want to learn enough to fit in and talk the talk. Whatever your reasons, this
book—essentially a primer chock full of easy-to-understand examples and minimal
jargon—should be ideal for any manager considering new ways to update or develop
new applications more effectively.

This book is for anyone trying to accomplish any or all of the following:

 • Make his or her organization more effective in building industrial-strength
software.

 • Transition into microservices and Docker containers while understanding how
they differ from SOA.

 • Learn microservices and Docker as part of his or her school curriculum to gain
new, highly marketable skills.

In short, this book is for anyone who wants to learn more about microservices
and Docker containers. I hope you are one of them! Let’s get started.

Register your copy of Microservices and Containers on the InformIT site for
 convenient access to updates and/or corrections as they become available. To
start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780134598383) and click Submit. Look
on the Registered Products tab for an Access Bonus Content link next to this
product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

M00_Kocher_FM_pi-xviii.indd 14 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

xv

Acknowledgments

As someone who has spent his entire career in tech, I never thought I would write a
book. I was an engineer, not an author. And so, before embarking on this challenge, I
had little idea what went into authoring a book—and how tough it would be. Let’s
just say, I knew it would be a lot of work, but not this much work. Writing this book
would have been difficult enough if I had been able to devote my working days to it.
Writing it while continuing to work full time seemed downright impossible at times!
And it would have been, too, were it not for the many talented and generous people
who guided and supported me every step of the way.

First, to the entire team at Pearson, thank you for accepting my proposal and
guiding me through the entire editorial process. In particular, I want to thank my
main contact there, Christopher Guzikowski for his guidance at every step, for his
trust that I could do this, and for his patience while I worked on this book. Also
big thanks to Michael Thurston for his indispensable editing and quick turn-
around time.

This book would not have been possible without similar aid and support from my
colleagues at Cisco, starting with Lenin Lakshminarayanan and Anuj Singh, who
spent countless evenings and weekends with me helping with all the code-related
aspects of the case study, a critical section of this book. Many thanks to Gerald
 Cantor, who read multiple drafts and provided honest, invaluable feedback; Ravi
Papisetti, Sameer Nair, Gurvinder Singh, and Nawaz Akther for providing other
 useful insights and suggestions; and Michael Wolman for reviewing every word of
this book—several times over.

This book also would have been impossible without the motivation and guidance
I received. Whenever I had doubts, I would seek guidance from my mentors, who
played a huge role in getting me to this point in my career. In particular, I would like
to thank Greg Carter, my mentor for the past 12 years, for his unconditional support
and guidance; Sunil Kripalani, for always trusting me and pushing me to be innova-
tive and strive to make an impact; and Antonio Nucci, a true visionary—just talking
with him motivates me to accomplish more.

Last but certainly not least, I want to thank my family for putting up with me dur-
ing this rewarding but frequently stressful experience! To my children, Prabhleen,

M00_Kocher_FM_pi-xviii.indd 15 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Acknowledgmentsxvi

Jashminder, and Jasleen, for spending countless weekends without me and under-
standing that Papa was working on his passion. And finally, especially, to my beauti-
ful wife, Raman, for her inspiration, encouragement, and trust in me. If not for her
support, this book would have remained merely a dream, not a reality.

Thank you all so much!

M00_Kocher_FM_pi-xviii.indd 16 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

xvii

About the Author

Parminder Kocher was born and raised in India and is a lifelong technology learner
with two decades of hands-on experience in building enterprise-grade software sys-
tems. He has been with Cisco Systems since 2005 and managed the company’s
Remote Management Service (RMS) platform, and has since worked as an innova-
tion evangelist leading multiple software groups. Currently, he is engineering direc-
tor for Cisco Networking Academy platform, where he leads the engineering teams
responsible for developing the Academy’s next-gen platform accesses in 178 coun-
tries. In addition to bachelor’s and master’s degrees in computer science, Kocher has
an executive MBA from Baylor’s Hankamer School of Business and an executive cer-
tificate in strategy and innovation from MIT’s Sloan School of Management. He
lives in Austin, Texas, with his wife and three children, and serves as committee chair
of the Boy Scout troop he founded in 2013.

M00_Kocher_FM_pi-xviii.indd 17 05/02/18 1:55 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

33

Chapter 4

Migrating and Implementing
Microservices

By this point you know what microservices are and how they work. If you’re still
reading, I have accomplished my first goal: piquing your interest enough that you are
considering implementing microservices yourself! Now it’s time to get down to brass
tacks: namely, the very critical topic of how to approach the transition to
microservices.

The Need for Transition

You’ll recall that a monolithic application is very large (in terms of lines of code
[LoC]) and complex (in terms of functions interdependencies, data, etc.), serving
hundreds of thousands of users across geographical regions and requiring sev-
eral developers and IT engineers. A monolithic app may look something like
 Figure 4.1.

Sometimes, even with all these characteristics, the application might run fine at
first. You may not encounter challenges in terms of application scalability or per-
formance. But with time and usage, issues will arise, and they may be different for
different applications. For example, for a cloud or web application, you may hit scal-
ability issues due to more users consuming your services, or it may become costly
and hard to release regular new updates due to longer build times and regression
testing. As shown in Figure 4.2, monolithic application users or the developers may
experience one or more issues listed on the right.

M04_Kocher_C04_p033-046.indd 33 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Chapter 4 Migrating and Implementing Microservices34

That’s when a migration to microservices may start sounding like more than a
trendy idea; it will sound like a lifesaver. We already learned a bit about microser-
vices in previous chapters, so we know our transition will look something like the
application shown in Figure 4.3.

Func
1

Func
2

Func
n

Func
n+1

Func
n+2

DB

>100K LoC

40+ Developers

Global Users

>100K + User

Figure 4.1 Basic structure of a monolithic app

Func
1

Func
2

Func
n

Func
n+1

Func
n+2

DB

>100K LoC

40+ Developers

Global Users

>100K + User

 Scalability –
Support more users

 Performance –
Standard response time

across geography

 Maintenance –
Cost and resources

 Agility –
Speed of development

and deployment

 Technology Freedom
Flexibility to use open

source components, etc.

Figure 4.2 Potential issues with a monolithic app

M04_Kocher_C04_p033-046.indd 34 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Creating a New Application with Microservices 35

So, how do we go about making such a change? There are two possible scenarios:
creating a brand-new application or converting or migrating a monolithic applica-
tion that already exists. The latter scenario is far more likely, but it is worth knowing
the ins and outs of both scenarios regardless of the current situation.

Creating a New Application with Microservices

Before we begin, let me say that I have not seen many real-world scenarios of building
a microservices-based application from scratch. Typically, an application is already
in place, and most applications I have worked on are more of a transition to a micro-
services architecture from a monolithic architecture. In these cases, the intention of
architects and developers has always been to reuse some of the existing implementa-
tion. As skills become readily available in the market and some successful implemen-
tations are published, we will see more examples of building microservices-based
applications from scratch, so it is certainly worthwhile to discuss this scenario.

Let’s say you have all the requirements figured out and ready to go into the archi-
tecture design of the application you are going to build. There are many common
best practices you need to think about as you get started, which are covered in the
following sections.

Func
1

Service
1

Service
2

Service
n

Service
n+2

Service
3

Service n+1

Func
2

Func
n

Func
n+1

Func
n+2

DB
In-Memory
Database

Figure 4.3 Transition from monolithic to microservices

M04_Kocher_C04_p033-046.indd 35 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Chapter 4 Migrating and Implementing Microservices36

Organization Readiness

As we discussed in Chapter 2, “Switching to Microservices,” the first question you
have to ask yourself is whether your organization is ready to transition to micro-
services. That means the various departments of your organization now need to
think differently about building and releasing software in the following ways:

 • Team structure. The monolithic application team (if one exists) needs to be
broken down into several small high-performance teams aware of or trained in
microservices best practices. As you saw in Figure 4.3, the new system will con-
sist of a set of independent services, each responsible for offering a specific ser-
vice. This is one key advantage of the microservices paradigm—it reduces the
communication overheads, including those multiple nonstop meetings. Teams
should be organized by business problems or areas they are trying to address.
The communication then becomes about the timing and set of standards/
protocols to follow so that these microservices can work with each other as
one platform.

 • Agility. Each team must be prepared to function independently of others. They
should be the size of a standard scrum team; otherwise, communication will
become an issue again. Execution is the key, and each team should be able to
address the changing business needs.

 • Tools and training. One of the key needs is the organization’s readiness to
invest in new tools and people training. The existing tools and processes, in
most cases, would need to be retired and new ones picked up. This will require
a large capital investment as well as investment in hiring people with new
skills and retraining existing staff members. In the long term, if the decision
is right to get on microservices, organizations will see savings and recoup the
investment.

Services-Based Approach

Unlike with monolithic applications, with microservices you need to take a self-
sustained services-based approach. Think of your application as a bunch of loosely
coupled services that communicate with each other to provide complete application
functionality. Each service must be thought of as an independent, self-contained
service with its own lifecycle that can be developed and maintained by independent
teams. These teams may select from a variety of technologies, including languages
or databases that best suit their services’ needs. For example, for an e-commerce
site, the team would write a completely independent service, such as a shopping

M04_Kocher_C04_p033-046.indd 36 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Creating a New Application with Microservices 37

cart microservice, with an in-memory database, and another one, such as an order-
ing microservice, with a relational database. A real-world application may employ
microservices for basic functions such as authentication, account, user registration,
and notification with the business logic encapsulated in an API gateway that calls
these microservices based on the client and external requests.

Just a reminder: a microservice may be a small service implemented by a single
developer or a complex service requiring a few developers. With microservices, the
size does not matter; it all depends on one function that a service has to provide.

Other aspects that must be considered at this point are scaling, performance, and
security. Scaling needs can be different and provided on an as-needed basis at each
microservice level. Security should be thought of at all levels, including data at rest,
interprocess communication, data at motion, and so on.

Interprocess (Service-to-Service) Communication

We discussed the topic of interprocess communication in depth in Chapter 3, “Inter-
process Communication.” Key aspects that must be thought of are security and com-
munication protocol. Asynchronous communication is the way to go, as it keeps all
requests on track and does not hold resources for extended periods of time.

Using a message bus such as RabbitMQ may prove to be beneficial for this kind of
communication. It is simple and can scale to hundreds of thousands of messages per
second. To prevent the messaging system from becoming a single point of failure if it
goes down, the messaging bus must be properly designed for high availability. Other
options include ActiveMQ, which is another lightweight messaging platform.

Security is key at this stage. In addition to selecting the right communication pro-
tocol, industry standard tools such as AppDynamics may be used to monitor and
benchmark the interprocess communication. Any anomalies must be reported auto-
matically to the security team.

When there are thousands of microservices, it does become complex to handle
everything. We already discussed how to address such issues through discovery ser-
vices and API gateways in Chapter 3.

Technology Selection

The biggest advantage of transitioning to microservices is that it enables choices.
Each team can independently select the language, technology, database, and so on,
that is the best fit for the given microservice. Usually in a monolithic approach, the
team does not have this flexibility, so make sure you do not overlook and miss the
opportunity.

M04_Kocher_C04_p033-046.indd 37 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Chapter 4 Migrating and Implementing Microservices38

Even if a team is handling multiple microservices, each microservice must be
looked at as a self-contained service, and it needs be analyzed. Scalability, deploy-
ment, build time, integrations and plugins operability, and so on, must be kept in
mind when choosing the technology for each microservice. For microservices with
lighter data but faster access, an in-memory database may be most suitable, whereas
others may share the same relational or NoSQL databases.

Implementation

Implementation is the critical phase; this is where all the training and best practices
knowledge comes in handy. Some of the critical aspects to keep in mind include the
following:

 • Independency. Each microservice should be highly autonomous with its own
lifecycle and treated as such. It needs to be developed and maintained without
any dependencies on other microservices.

 • Source control. A proper version control system must be put at place, and
each microservice must follow the standards. Standardizing on a repository
is also helpful, as it ensures all the teams use the same source control. It helps
in various aspects, such as code review, providing easy access to all the code in
one place. In the long term, it makes sense to have all the services on the same
source control.

 • Environments. All different environments, such as dev, test, stage, and produc-
tion, must be properly secured and automated. The automation here includes
the build process—that way the code can be integrated as required, mostly
on a daily basis. There are several tools available, and Jenkins is widely used.
Jenkins is an open source tool that helps automate the software build and
release process including continuous integration and continuous delivery.

 • Failsafe. Things can go wrong, and software failure is inevitable. Handling
failures of downstream services must be addressed within the microservice
development. Failure of other services must be graceful to the extent that the
failure should be invisible to the end user. This includes managing service
response times (timeouts), handling API changes for downstream services, and
limiting the number of auto-retry.

 • Reuse. With microservices, don’t be shy about reusing the code by using copy
and paste, but do it within limits. This may cause some code duplication, but
it’s better than using shared code that may end up coupling services. In micro-
services, we want decoupling, not tight coupling. For example, you will write

M04_Kocher_C04_p033-046.indd 38 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Creating a New Application with Microservices 39

code to consume the output response from a service. You can copy this code
every time you call the same service from any client. Another way to reuse code
is by creating common libraries. Multiple clients can use the same library, but
then each client should be responsible for maintaining its libraries. It can some-
times become challenging when you create too many libraries and each client is
maintaining a different version. In that case, you may have to include multiple
versions of same library, and the build process may become difficult due to
backward compatibility and similar concerns. Depending on your needs, you
can go either way as long as you can control the number of libraries and ver-
sions by clients and put a tight process around them. This will certainly save
you from lot of code duplication.

 • Tagging. Given the sheer number of microservices, debugging a problem
may become difficult, so you need to do some kind of instrumentation at this
stage. One of the best practices is to tag each request with a unique request
ID and log each one of them. This unique ID will identify the originating
request and should be passed by each service to any downstream requests.
When you see issues, you can clearly track back through logs and identify
the problematic service. This solution will be most effective if you establish
a centralized logging system. All the services should log in all the messages
to this shared system in a standardized format so that teams can replay the
events as required all from one place, from infrastructure to application.
A shared library for centralized logging is worth looking into, as we previ-
ously discussed. There are several log management and aggregation tools
out there in the market, such as ELK (Elasticsearch, Logstash, Kibana) and
Splunk, that are ideal.

Deployment

Automation is the key during deployment. Without it, success with a microservices
paradigm would be almost impossible. As we discussed, there may be hundreds to
thousands of microservices, and for the agile delivery, automation is a must.

Think of deploying thousands of microservices and maintaining them. What hap-
pens when one of the microservices goes down? How do you know which machine
has enough resources to run your microservices? It becomes very complicated to
manage this without automation in place. Various tools, such as Kubernetes and
Docker Swarm, can be used to automate the deployment process. Given the impor-
tance of this topic, a whole chapter, Chapter 9, “Container Orchestration,” is dedi-
cated to deployment.

M04_Kocher_C04_p033-046.indd 39 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Chapter 4 Migrating and Implementing Microservices40

Operations

The operations part of the process needs to be automated as well. Again, we are talk-
ing about hundreds to thousands of microservices—organizational capabilities need
to mature enough to handle this level of complexity. You’ll need a support system,
including the following:

 • Monitoring. From infrastructure to application APIs to last-mile performance,
everything should be monitored, and automatic alerts with proper thresholds
should be put in place. Consider building live dashboards with data and alerts
that pop up during issues.

 • On-demand scalability. With microservices, scalability is the simplest task.
Provision another instance of your microservice you want to scale and just put
it behind the existing load balancer and you are all set. But in a scaled environ-
ment, this also needs to be automated. As we will discuss later, it is a matter of
setting up an integer value to tell the number of instances you want to run for a
particular microservice.

 • API exposure. In most cases, you will want to expose the APIs externally for
external users to consume. This is best done by using an edge server, which can
handle all the external requests. It can utilize the API gateway and discovery
service to do its job, and you can use one edge server per device type (e.g.,
mobile, browser) or use case. An open source application created by Netflix,
called Zuul, can be utilized for this function and beyond.

 • Circuit breaker. Sending a request to a failed service is pointless. Hence, a cir-
cuit breaker can be built that tracks the success and failure of every request
made to every service. In the case of multiple failures, all the requests to that
particular service should be blocked (break the circuit) for a set time. After the
set time expires, another attempt should be made, and so on. Once the response
is successful, reconnect the circuit. This should be done at the service instance
level. Netflix’s Hystrix provides an open source circuit-breaker implementation.

Migrating a Monolithic Application to Microservices

While most of the best practices for building a new microservices-based application
apply to migrating from an existing monolithic application as well, there are some
additional guidelines that, if followed, will make the migration simpler and more
efficient.

M04_Kocher_C04_p033-046.indd 40 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Migrating a Monolithic Application to Microservices 41

Although it may sound correct to convert the whole monolithic application to a
completely microservices-based application, it may not be efficient or may be very
costly in some cases to convert every function or capability into microservices. You
might end up writing the application from scratch, after all. The right way to migrate
may require a stepwise approach, as shown in Figure 4.4.

The next question is, Where do we start with the current monolithic application?
If the application is really old and it would be time consuming and difficult to take
pieces out (i.e., if there is very high level of cohesiveness), then it is probably better
to start from scratch. In other cases where parts of the code can be disabled quickly
and the technology architecture is not completely outdated, it is better to start with
rebuilding the components as microservices and replace the old code.

Func
1

Service
1

Service
2

Func n Func
n+1

Func
n+2

Service
3

Func
2

Func
n

Func
n+1

Func
n+2

DB
DB

Service
1

Service
2

Service
n

Service
n+2

Service
3

Service n+1

In-Memory
Database

Service
1

Service
2

Service
3

Func n Func
n+2

Service n+1

In-Memory
Database

DB

Figure 4.4 Basic migration steps, monolithic to microservices

M04_Kocher_C04_p033-046.indd 41 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Chapter 4 Migrating and Implementing Microservices42

Microservices Criteria

The question then becomes what components should be migrated first or even
migrated at all. That brings us to what I call the “microservices criteria,” which out-
line one of the possible ways to select and prioritize the functions that should be
migrated to microservices. They are a set of rules you establish that either qualifies
or disqualifies the conversion of your existing monolithic application’s components
to microservices given the organization’s needs at that time.

That “time” is very important here because with time the needs of the organiza-
tion may change, and you may have to come back and convert more components to
microservices later. In other words, with changing needs, additional components of
your monolithic application may qualify for the conversion.

Here are best practices that can be considered as microservices criteria during the
conversion process:

 • Scale. You need to determine which functions are highly used. Convert the
highly used services or application functionality as microservices first. Recall,
a microservice performs only one well-defined service. Keep the principle in
mind and divide the application accordingly.

 • Performance. There likely are components that are not performing well, and
other alternatives are readily available. It may be there is open source plugin
available, or you may want to build a service from scratch. One of the key
things to keep in mind is the boundary of a microservice. As long as you
design your microservice in such a way that it does one and only one thing
well, it is good. Determining the boundary is often going to be hard, and you
will find it easier to do this with practice. Another way to look at the micros-
ervice boundary is that you should be able to rewrite the whole microservice
in a few weeks’ time (if/when required) as opposed to taking few months to
rewrite the service.

 • Better technology alternatives or polyglot programming. Domain-specific
languages can be employed to help with problem domains. This is particularly
applicable to components for which you received many enhancement requests in
the past and you expect that to continue. If you think not only that such a com-
ponent’s implementation can be simplified using a new language or capability
in the market but also that future maintenance and updates would become eas-
ier, then now is the right time to address such changes. In other cases, you may
find another language provides easier abstractions for concurrency than the
current one used. You can leverage the new language for a given microservice

M04_Kocher_C04_p033-046.indd 42 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Migrating a Monolithic Application to Microservices 43

while the rest of the application can still be using a different language. Likewise,
you may want some microservices to be extremely fast and may decide to write
them in C to get the maximum gains rather than writing in another high-level
language. The bottom line is to take advantage of this flexibility.

 • Storage alternatives or polyglot persistence. With the rise of big data, some
components of the application may provide value by using NoSQL databases
rather than relational databases. If any such component in the application may
benefit from this alternative, then it may be right time to make the switch to
NoSQL.

 These are the key aspects you should consider for each service or feature within
your monolithic application, and you need to prioritize the conversion of such
items first. Once you have derived the value from high-priority items, you can
then apply other rules.

 • Modification requests. One important thing to track in any software lifecy-
cle is the new enhancements requests or changes. Features that have a higher
number of change requests may be suitable for microservices because of the
build and deployment time. Separating such services reduces the build and
deployment time, as you will not have to build the entire application, just the
changed microservice, which may also increase availability time for the rest of
the application.

 • Deployment. There are always some parts of the application that add deploy-
ment complexity. In a monolithic application, even if a particular feature is
untouched, you still must go through the complete build and deployment
process. If such cases exist, it is beneficial to cut out such pieces and replace
them with microservices so your overall deployment time is reduced for the rest
of the monolithic application. We talk more about this after we learn about
containers.

 • Helper services. In most applications, the core or main service depends on
some of the helper services. The unavailability of such helper functions may
impact the availability of the core service. For example, in the helpdesk appli-
cation, ticketing depends on the product catalog service. If the product catalog
service is not available, the user will be unable to submit a ticket. If such cases
exist, helper services should be converted to microservices and appropriately
made highly available so they can better serve core services. These are also
called circuit-breaker services.

M04_Kocher_C04_p033-046.indd 43 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

Chapter 4 Migrating and Implementing Microservices44

Depending on the application, this criteria may require most of the services to
be converted to microservices, and that is okay. The intention here is to simplify the
conversion process so that you can prioritize and define the roadmap for your migra-
tion to a microservices-based architecture.

Rearchitecting the Services

Once you have identified the functions to be migrated as microservices, it’s time to
start rearchitecting the selected services following the best practices from the earlier
scenario. Here are the aspects to keep in mind:

 • Microservices definition. For each function, define the appropriate micros-
ervices, which should include communication mechanism (API), technology
definition, and so on. Consider the data your existing function uses, or create
and plan accordingly the data strategy for microservices. If the function was
on heavy databases such as Oracle, would it make sense to move to MySQL?
Determine how you are going to manage the data relationship. Finally, run
each microservices as a separate application.

 • Refactor code. You may reuse some of the code if you are not changing the
programming language. Think about the storage/database layer—shared
vs. dedicated, in-memory vs. external. The goal here is not to add new func-
tionality unless required but to repackage the existing code and expose the
required APIs.

 • Versioning. Before you begin coding, decide on the source control and version-
ing mechanism, and make sure these standards are followed. Each microservice
is to be a separate project and deployed as a separate application.

 • Data migration. If you decide to create a new database, you will have to
migrate the legacy data also. This is usually handled by writing simple SQL
scripts depending on your source and destination.

 • Monolithic code. Initially, leave the existing code in place in the monolithic
application in case you have to roll back. You can either update the rest of
the code to use the new microservices or, better, split your application traf-
fic, if possible, to utilize both the monolithic and microservices version. This
provides you the opportunity to test and keep an eye on performance. Once
confident, you can move all the traffic to microservices and disable/get rid of
old code.

M04_Kocher_C04_p033-046.indd 44 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

A Hybrid Approach 45

 • Independent build, deploy, and manage. Build and deploy each microservice
independently. As you roll out new versions of microservices, you can again
split the traffic between the old and the new version for some time. This means
that you may have two or more versions of the same microservice running in
the production environment. Some of the user traffic can be routed to the new
microservice version to make sure the service works and performs right. If the
new version is not performing optimally or as expected, it would be easy to roll
back all the traffic to the previous version and send the new version back to
development. The key here is to set up the repeatable automated deployment
process and move toward continuous delivery.

 • Old code removal. You can remove your temporary code and delete the data
from the old storage location only after you have verified that everything is
migrated correctly and operating as expected. Be sure to make backups along
the way.

A Hybrid Approach

When writing a brand-new application, developers can directly follow the microser-
vices architecture principles and blueprint to build the software application, as we
have discussed. Developers sometimes follow a kind of hybrid approach of microser-
vices and monolithic. In this case, they can develop part of their application as
microservices and the rest following standard SOA/MVC practices based on certain
criteria. The idea is that not all the components of the application may qualify as
microservices.

As we discussed in Chapter 3, microservices offer lot of flexibility, but this flex-
ibility comes at some cost. The hybrid approach is to balance the flexibility and cost
aspects with the understanding that, over time, components can be pulled out of
the monolithic part and converted to microservices on an as-needed basis. The key
is to keep both approaches in mind, along with microservices criteria, during this
transition.

M04_Kocher_C04_p033-046.indd 45 29/01/18 1:00 PM

The following material is being reprint with the permission of Pearson. Copyright © 2018 Pearson. All rights reserved.
For more information please visit informit.com.

 Transition to Microservices and DevOps to Transform your
Software Effectiveness

Together, microservices and Docker containers can bring
unprecedented agility and scalability to application
development and deployment—especially in large,
complex projects where speed is crucial but small errors
can be disastrous. In Microservices and
Containers, Parminder Singh Kocher demonstrates why
and how these technologies can help you build, deploy,
manage, and scale industrial-strength applications.

Learn how to leverage microservices and Docker to drive
exponential improvements in DevOps effectiveness, on-
demand scalability, application performance, time-to-
market, code reuse, and application reliability. Kocher also
offers detailed guidance and a complete roadmap for
transitioning from monolithic architectures, and an
in-depth case study walking through the migration of an
enterprise-class SOA system.

 Understand how microservices enable you to organize
applications into standalone components that are
easier to manage, update, and scale

 Decide whether microservices and containers are
worth your investment, and manage the
organizational learning curve associated with them

 Apply best practices for interprocess communication
among microservices

 Migrate monolithic systems in an orderly fashion
 Understand Docker containers, installation, and

interfaces
 Network, orchestrate, and manage Docker containers

effectively
 Use Docker to maximize scalability in microservices-

based applications

ORDER & SAVE

SAVE 35% WHEN YOU ORDER
from informit.com/kocher and enter the
code INFOQ during checkout

FREE US SHIPPING on print books

Major eBook Formats

Only InformIT offers PDF, EPUB, & MOBI
together for one price

OTHER AVAILABILITY

Through O’Reilly Safari subscription service

Booksellers and online retailers including
Amazon/Kindle store and
Barnes and Noble/bn.com

Parminder Kocher is a lifelong technology learner with
two decades of hands-on experience in building
enterprise-grade software systems. He started at Cisco
Systems in 2005 managing the Remote Management
Service (RMS) platform, and has since worked as an
innovation evangelist leading multiple software groups.
Currently, he is engineering director for Cisco Networking
Academy platform, where he leads the engineering teams
responsible for developing the Academy’s next-gen
platform.

Available March 30, 2018

	9780134598383_Kocher_FM
	9780134598383_Kocher_sample_Ch04
	Kocher_InfoQ_Flyer

