
Using OSWorkflow in your
Application

As seen in Chapter 2, one way to use OSWorkfl ow is embedding it into your
application. This chapter covers the main API features needed to successfully use
OSWorkfl ow inside your application.

This chapter covers all the details of the OSWorkfl ow confi guration and persistence
options. It also talks about unit testing for workfl ow defi nitions, which is an
indispensable feature for quickly validating and checking descriptors.

We also integrate OSWorkfl ow with Spring—a popular lightweight object container
with features such as declarative transactions and AOP programming. This gives
OSWorkfl ow features to your Spring application.

The chapter ends with OSWorkfl ow's security mechanisms for restricting access to
actions and Workflow instances, and for extending the security model with our own
user and group directory such as LDAP.

OSWorkflow Configuration
 This section will cover the confi guration options available for OSWorkfl ow. We'll
show you how to register the workfl ow defi nition created in the previous two
chapters and generate new workfl ow instances through programming. After that, we
will see the workfl ow persistence options offered by OSWorkfl ow and PropertySet.

Registering our Process Descriptors
 Before tackling the aspects of persistence and the workfl ow factory concept, we must
see how we can confi gure OSWorkfl ow.

Using OSWorkfl ow in your Application

[70]

Firstly, the framework confi gures itself by parsing and reading the osworkflow.xml
fi le in the classpath. This fi le contains several settings, such as the WorkflowStore
implementation class name, the WorkflowFactory handler class name, and so on.

The default osworkflow.xml fi le is as follows:

<osworkflow>
 <persistence class="com.opensymphony.workflow.spi.memory
. MemoryWorkflowStore"/>
 <factory class= "com.opensymphony.workflow.loader.
 XMLWorkflowFactory">
 <property key="resource" value="workflows.xml" />
 </factory>
</osworkflow>

OSWorkfl ow delegates the persistence features—such as loading and saving
individual instances—of the engine to an interface named WorkflowStore.
There are several built-in implementations such as EJB, JDBC, etc. The default
osworkflow.xml fi le uses the MemoryWorkflowStore implementation for persisting
instances in memory.

The WorkflowFactory is the interface responsible for reading workfl ow
defi nitions in any format and giving them to the engine in a proper format. The
default implementation is XMLWorkflowFactory; obviously this reads XML
workfl ow defi nitions.

As you can see, the default osworkflow.xml fi le is confi gured to use an
XMLWorkflowFactory and points to a resource fi le called workflows.xml. The
workflows.xml fi le looks like this:

<workflows>
 <workflow name="holiday" type="resource" location="holiday.xml"/>
 <workflow name="loan" type="resource" location="loan.xml"/>
</workflows>

The workflows.xml fi le describes which workfl ow defi nitions are available and
in which fi le the engine can fi nd the XML data. You can see we have two different
processes to initiate—holiday and loan.

Chapter 4

[71]

Embedding OSWorkflow into your
Application
 OSWorkfl ow can be embedded in any application whether it's J2SE or JEE based by
simply including the osworkflow.jar fi le into the classpath of the application. In
any case, you must have the osworkflow.xml fi le, any referenced resources such
as workflows.xml, and the XML of the process in the classpath. In this case, the
workfl ow descriptor name is holiday.xml.

Starting a Workflow
 Imagine you have an application that interfaces with OSWorkfl ow, and you'd like to
instantiate a new Workflow. This is as easy as:

Workflow wf = new BasicWorkflow("johndoe");
Long id = Wf.initialize("holiday", 1, null);

The fi rst line creates a new BasicWorkflow with the current username as parameter.
BasicWorkflow objects are heavyweight and it is reasonable to have one instance per
user to avoid the creation cost.

The second line executes the initialize() method with the workfl ow name as the
fi rst parameter, the initial action number as the second parameter, and the actions
input map as the third parameter. In this case, the workfl ow name is the defi nition
name as stated in the workflows.xml fi le. We send null as the third parameter
because we need no input parameters to instantiate this particular workfl ow.

The returned Long is the workfl ow identifi cation number assigned by the engine.
The initial number is defi ned in the WorkflowDescriptor. If this ID is incorrect, the
engine will throw an InvalidActionException.

This code snippet doesn't call the Configuration object. This is very
important if you plan to use differently confi gured Workfl ows in the
same JVM.

Before initializing a workfl ow instance, you can test it by calling the Workflow
interface method, canInitialize(). If this method returns true, then you can safely
execute the initialize() method.

boolean canInit = wf.canInitialize("Holiday", 1, null)

Using OSWorkfl ow in your Application

[72]

Executing Actions
 We now have a newly created instance; let's execute some actions. We need to invoke
the doAction method of the Workflow interface. The code is as follows:

Wf.doAction(id, 1, null);

The parameters are the workfl ow identifi er number, the action number ID (now you
can see why actions must be uniquely numbered within a defi nition), and a map
with inputs for the workfl ow. We send null as the third parameter indicating that
there is no need of external inputs for this workfl ow type and action.

Every call to the initialize() and doAction() methods takes a map as an input
parameter. The transient variables map is merged with this input map, so you can
also fi nd the input content. This is the main mechanism to send information to the
Workflow instance from the caller. The input map key name is preserved in the
transient variables map.

What's the Status?
 To get the current steps of the workfl ow, you must call the getCurrentSteps()
method of the Workflow interface. The code snippet is as follows:

List steps = wf.getCurrentSteps(id);

This method returns a list of StepDescriptor, one for each current step
of the Workflow instance. To see the step information, we must call the
WorkflowDescriptor. The following code snippet shows you how to do that:

for (Iterator iterator = steps.iterator(); iterator.hasNext();)
{
 Step step = (Step) iterator.next();
 StepDescriptor sd = wd.getStep(step.getStepId());
}

By iterating the current step list and looking up a StepDescriptor from the
WorkflowDescriptor, we can get detailed step information, such as the ID, start
date, fi nish date, and name of the step. If you want to see the history steps, call the
getHistorySteps() method. The code is as follows:

List steps = wf.getHistorySteps(id);

Similarly to its current steps counterpart, getHistorySteps returns a list of
StepDescriptor, this time with the completed steps of the Workflow instance. To
describe the history steps, you can use the code snippet mentioned earlier to describe
the current steps.

Chapter 4

[73]

What can I Do?
Typically in user interfaces, you must see the actions available for the current
steps and the current user. The Workflow interface has a method called
getAvailableActions() for that purpose. The following code fragment shows how
to invoke it:

int[] actions = wf.getAvailableActions(id, null);

The parameters are the workfl ow instance identifi er and the parameters map again.
For some action to show as available, it must satisfy some condition such as the
existence of external data. The passing of the map allows for this sort of scenario to
happen. The method returns an array of action IDs. To retrieve the action names, you
must use the WorkflowDescriptor. See the following snippet:

WorkflowDescriptor wd =
 wf.getWorkflowDescriptor(wf.getWorkflowName(id));
for (int i = 0; i < actions.length; i++)
{
 String name = wd.getAction(actions[i]).getName();
}

The code iterates over the action ID array and calls the getAction() descriptor
method. This method returns an ActionDescriptor—an object that describes an
action in the defi nition. Finally, it calls the ActionDescriptor.getName() method to
obtain the name of the action.

The Useful Abstract States
 Besides the current status and old status values you provide in the defi nition,
OSWorkfl ow has the concept of an abstract state, which is a state every workfl ow has
implicitly. These states are as follows:

State Description
Activated Workfl ow is live.
Completed Workfl ow has been fi nished without any problem.
Created Workfl ow has been initialized but no actions have been executed yet.
Killed Workfl ow has been canceled.
Suspended Workfl ow has been suspended.
Unknown The state of the workfl ow is unknown.

Programmatically you can know the abstract state for a particular Workflow instance
by calling the getEntryState() method.

 int abstract = wf.getEntryState(long id)

Using OSWorkfl ow in your Application

[74]

You can change the abstract state of the instance by calling the changeEntryState()
method of the Workflow interface. Be sure to check the abstract state constants
present in the Workflow interface.

Querying the Workflow Store
 Human-oriented BPMS have GUIs that let the user realize tasks and search
for work items. OSWorkfl ow permits searching the workfl ow store via a
WorkflowExpressionQuery. This class is a GOF composite design pattern, so you
can nest expressions into expressions for complex queries.

This search is a very generic one including only the fi elds in OSWorkfl ow.
For more powerful searches, you should create a domain concept that can
be attached to the workfl ow ID. For example, the holiday workfl ow uses
the domain concept of an Employee Request.
You should have an Employee Request table with all the important
domain data, such as department, dates, etc. This is the table to be
searched when domain data is needed. If you can survive with only the
workfl ow default data, the following search is very useful.

 The following code example searches the store for Workflows having current steps
with the OWNER equal to johndoe. Don't worry about the owner; we'll see this concept
in the security section of this chapter.

WorkflowExpressionQuery q = new WorkflowExpressionQuery
 (new FieldExpression(FieldExpression.OWNER,
 FieldExpression.CURRENT_STEPS,
 FieldExpression.EQUALS, "johndoe"));
List wfs = wf.query(q);

The following fi elds are available for searching:

Field Description
ACTION The action that triggered the transition to the step.
CALLER The caller of the action.
DUE_DATE The due date of the step.
FINISH_DATE The fi nish date of the step. It is Null if the step is not yet fi nished.
OWNER The owner of the step.
START_DATE The start date of the step.
STATE The state of the workfl ow.
STATUS The status of the step.
STEP The step.
NAME The name of the business process.

Chapter 4

[75]

The contexts are as follows:

Context Description
CURRENT_STEPS The current steps of the workfl ow
ENTRY The workfl ow entry that is the header information
HISTORY_STEPS The history steps of the workfl ow

The operators are as follows:

Operator Description
EQUALS Equals operator
GT Greater than operator
LT Less than operator
NOT_EQUALS Not Equals operator

The workfl ow store drains performance from transactional activity, so use it with
care. Some workfl ow stores don't support querying while others don't support
nested expressions; so be sure to check your store. For example, the HibernateStore
included in OSWorkfl ow currently doesn't support nested expressions.

Querying the Workflow Factory
 The WorkflowFactory interface has the following methods to inspect the available
workfl ows descriptors.

The getWorkflowName() method returns the workfl ow name of a particular
Workflow instance. The getWorkflowNames() method returns an array of strings
with all the available workfl ow defi nition names. Check the following snippet for the
usage of these methods:

String wfName = workflow.getWorkflowName(workflowId);
System.out.println("available workflows:" +
 Arrays.toString(workflow.getWorkflowNames()));

This code is needed when there's more than one WorkflowDescriptor in your
system and you want to programmatically query their names. Once you have their
names, you can instantiate new workfl ows or inspect their descriptors.

Using OSWorkfl ow in your Application

[76]

Inspecting the Workflow Descriptor from
Code
 The XMLWorkflowDescriptor describes a business process in a human-readable
format. When OSWorkfl ow parses and validates the XML, it builds a memory
structure called the WorkflowDescriptor. This descriptor has all the information
that the process engine needs to follow the process and to create a new instance of
the Workflow. We can get a hold of the descriptor of any factory-registered Workflow
by calling the getWorkflowDescriptor() method of the Workflow interface. The
following code fragment shows a sample invocation:

WorkflowDescriptor wd = wf.getWorkflowDescriptor("holiday");

This code will return an object representation of the XML workfl ow descriptor that
we built in Chapter 2. By traversing the descriptor, we can analyze the process
structure and get the steps, actions, results, etc. of the WorkflowDescriptor.

Don't confuse the WorkflowDescriptor with its instances.

You can also build a WorkflowDescriptor programmatically; it is useful for
dynamic on-the-fl y processes.

Using the Workflow Configuration Object
 The examples of instantiating a new workfl ow that have been discussed so far didn't
make any reference to the Configuration object. If you don't call the Configuration
object, OSWorkfl ow assumes a unique confi guration for workfl ows in the JVM. If
you plan to use workfl ows with different store and factory options, you must call the
Configuration object. The following code fragment shows you how:

Workflow workflow = new BasicWorkflow("Holiday");
Configuration config = new DefaultConfiguration();
workflow.setConfiguration(config);

It is recommended to call the Configuration object for fl exibility. Be sure to call
the setConfiguration method of the Workflow interface to use the per-instance
confi guration model.

Chapter 4

[77]

Workflow Interface Implementations
 OSWorkfl ow offers great extensibility by giving us different implementations of the
Workflow interface. The following table summarizes the relevant features of each one:

Implementation Features
BasicWorkflow Basic implementation. It doesn't support transactions.
OfBiz Based on OfBiz, it supports local transactions.
EJBWorkflow Using JTA and CMP, it supports global XA transactions. It must be

used only inside J2EE-compliant application servers, like JBoss.

The OfBiz implementation is based on the transaction components of the OfBiz suite
(an open-source ERP) to implement local transactions i.e., JDBC transactions. Use it
only if you are storing the Workflow instance data in a JDBC-compliant database.

On the other hand, the EJBWorkflow alternative will use the JTA J2EE API to create
a global transaction in each method invocation, causing an unnecessary overhead for
simple applications. Use it only if you need distributed transactions, i.e. a workfl ow
action and another database inserted in one transaction.

Implementations supporting transactions like OfBiz and EJBWorkflow can roll back
the current transaction by calling the setRollbackOnly() method. Also, in the
case of an exception, OSWorkfl ow will roll back the current transaction to preserve
data consistency.

To change your current implementation just instantiate the implementation class
instead of BasicWorkflow.

Remember that BasicWorkflow doesn't support transactions!

If none of the options suits your needs, you can create your own Workflow class by
implementing the Workflow interface.

Loading the Descriptors—the Workflow
Factory
 As we have seen before, OSWorkfl ow delegates the responsibility of loading
workfl ow defi nitions to a WorkflowFactory implementation. There are three
built-in implementations to choose from, namely, XMLWorkflowFactory,
JDBCWorkflowFactory, and SpringHibernateWorkflowFactory.

Using OSWorkfl ow in your Application

[78]

Don't confuse the WorkflowFactory with the WorkflowStore. The
fi rst one manages the descriptors while the latter manages the workfl ow
instance data.

XMLWorkflowFactory loads the process defi nition from an XML fi le in the fi le
system. This is the default implementation. It takes only one parameter called
resource, which specifi es the workflow XML fi le name. This fi le is loaded from the
classpath. A slightly modifi ed variation is the SpringWorkflowFactory, which looks
up the XML fi les from a Spring resource.

Loading Descriptors from a Database
 JDBCWorkflowFactory uses the database to load the workfl ow descriptors. This
is done with a BLOB or LONG VARCHAR column. To use this factory, you must declare
it in osworkflow.xml fi le; it takes a mandatory parameter called datasource,
which an is the JNDI name of the JDBC datasource to be used. See the following
osworkflow.xml fi le:

<osworkflow>
 <factory class=
 "com.opensymphony.workflow.loader.JDBCWorkflowFactory">
 <arg name="datasource" value="jdbc/Defaultds"/>
 </factory>
</osworkflow>

This sample fi le will try to look up a JNDI resource called jdbc/Defaultds and
then try to get a connection from it. Finally, it will try to use a database table named
OS_WORKFLOWDEFS to fi nd the workfl ow descriptors. This table is composed of
two columns, the fi rst WF_NAME, which is the workfl ow name and is of the CHAR or
VARCHAR type while the second column is WF_DEFINITION. The whole XML will be
stored in this column as a BINARY or TEXT type.

SpringHibernateWorkflowFactory is the same as above, but uses the Hibernate
framework, benefi ting from caching and the high-performance ORM features.

Each WorkflowFactory retrieves a WorkflowDescriptor, a class representing
the structure of the defi nition in an object-oriented way. Implementing your own
WorkflowFactory enables you to build workfl ow defi nitions on the fl y. You can
implement a template defi nition and customize it on the fl y using some rules.

You can build your own implementation if none of the options fi ts your requirement
by implementing the WorkflowFactory interface.

Chapter 4

[79]

Persisting Instance Information
OSWorkfl ow delegates the responsibility of loading and storing instance data to the
WorkflowStore. Later in the section we'll see the different built-in alternatives. First,
we'll take a look at exactly which data is made persistent.

 The data that is made persistent in OSWorkfl ow when you use one of the
database-backed alternatives is as follows:

Workfl ow entry: The instance header data, such as process name, abstract
state, etc.
Current and history steps: The steps that were travelled and the one that the
workfl ow is in.
PropertySet: The persistent instance-specifi c data.

The following fi gure displays the relationships between them.

PropertySet

HistorySteps CurrentSteps

0..1

WorkflowEntry

0..* 0..*

OSWorkfl ow gives several choices for storing this information. It's very important
that you chose your strategy carefully for maintenance and performance reasons.
You can confi gure the persistence strategy in the osworkflow.xml fi le.

Persistence Choices
T he following are the built-in WorkflowStore implementations in OSWorkfl ow:

Memory Store
This store strategy saves the workfl ow information in RAM, useful for testing your
business processes.

•

•

•

Using OSWorkfl ow in your Application

[80]

JDBC
This uses plain old JDBC to access and save the data. It lacks the caching and fetching
strategies of Hibernate. The JDBC store is a more basic strategy than Hibernate and is
suitable only for very simple workfl ow applications.

Hibernate
The Hibernate store uses this ORM framework to manage the persistence of
Workflows. It has the advantage of high performance ORM features such as caching.

Hibernate uses XML fi les to map objects to relational concepts. In the mapping fi les,
you can tune parameters such as fetching strategies and lazy loading. For more
information about Hibernate, take a look at www.hibernate.org.

This store is highly recommended as the default production store of OSWorkfl ow.

Other Stores
OSWorkfl ow is bundled with other store implementations like
MySQLWorkflowStore, SerializableStore, OfBizStore, and EJBStore. Be aware
that they are designed for very specifi c scenarios.

 If none of the previous strategies suits your needs, then you can build one by
implementing the WorkflowStore interface.

Configuring the JDBC Store
I n this section, we'll confi gure the JDBC Store for basic usage. This store expects
several confi guration parameters in the osworkflow.xml fi le:

<persistence class=
 "com.opensymphony.workflow.spi.jdbc.JDBCWorkflowStore">
<!-- For jdbc persistence, all are required. -->
 <property key="datasource" value="jdbc/DefaultDS"/>
 <property key="entry.sequence"
 value="SELECT nextVal('seq_os_wfentry')"/>
 <property key="entry.table" value="OS_WFENTRY"/>
 <property key="entry.id" value="ID"/>
 <property key="entry.name" value="NAME"/>
 <property key="entry.state" value="STATE"/>
 <property key="step.sequence"
 value="SELECT nextVal('seq_os_currentsteps')"/>
 <property key="history.table" value="OS_HISTORYSTEP"/>
 <property key="current.table" value="OS_CURRENTSTEP"/>
 <property key="historyPrev.table" value="OS_HISTORYSTEP_PREV"/>
 <property key="currentPrev.table" value="OS_CURRENTSTEP_PREV"/>
 <property key="step.id" value="ID"/>
 <property key="step.entryId" value="ENTRY_ID"/>

Chapter 4

[81]

 <property key="step.stepId" value="STEP_ID"/>
 <property key="step.actionId" value="ACTION_ID"/>
 <property key="step.owner" value="OWNER"/>
 <property key="step.caller" value="CALLER"/>
 <property key="step.startDate" value="START_DATE"/>
 <property key="step.finishDate" value="FINISH_DATE"/>
 <property key="step.dueDate" value="DUE_DATE"/>
 <property key="step.status" value="STATUS"/>
 <property key="step.previousId" value="PREVIOUS_ID"/>
</persistence>

The most important confi guration setting is the JNDI datasource, in this case
jdbc/Defaultds. You must use the same name that you've used to confi gure the
application server's datasource.

 The other parameters map the tables, column names, and sequences to be used with
the JDBC-backed store. If you didn't modify the included SQL scripts, then these
values will work right out of the box. Then you should take a look at the entry and
step sequences, which vary a lot across database vendors.

Search for SQL scripts tailored to different databases in the src\etc\
deployment\jdbc directory.

After you have executed the SQL script and confi gured the osworkflow.xml fi le, all
the new Workflow instance and associated data will be stored in the database.

PropertySet Persistence
If you're going to use the PropertySet functionality within your
WorkflowDescriptor and you want to persist the variables, then you must confi gure
the PropertySet to use the database instead of the system's memory.

You can confi gure the PropertySet persistence mechanism in the propertyset.xml
fi le in the classpath. If you are using a JDBC-based store for persisting instance data,
then you should use the PropertySet's counterpart, the JDBCPropertySet. As you
might have guessed, it stores the PropertySet data in a couple of database tables.

Configuring the JDBC PropertySet
H ere is the confi guration (propertyset.xml) to use a JDBC-based PropertySet:

<propertysets>
 <propertyset name="jdbc" class=
 "com.opensymphony.module.propertyset.database.JDBCPropertySet">
 <arg name="datasource" value="jdbc/DefaultDS"/>

Using OSWorkfl ow in your Application

[82]

 <arg name="table.name" value="OS_PROPERTYENTRY"/>
 <arg name="col.globalKey" value="GLOBAL_KEY"/>
 <arg name="col.itemKey" value="ITEM_KEY"/>
 <arg name="col.itemType" value="ITEM_TYPE"/>
 <arg name="col.string" value="STRING_VALUE"/>
 <arg name="col.date" value="DATE_VALUE"/>
 <arg name="col.data" value="DATA_VALUE"/>
 <arg name="col.float" value="FLOAT_VALUE"/>
 <arg name="col.number" value="NUMBER_VALUE"/>
 </propertyset>
</propertysets>

This snippet is self-descriptive and includes the usual JNDI datasource name, the
table, and each of the column names.

Unit Testing your Workflow
A fter constructing and changing your business processes, you will want to validate
the functionality and fl ow. This section explains how to use the JUnit framework to
verify the correctness and completeness of your business process. This verifi cation is
called unit testing.

What is JUnit?
J Unit is a unit-testing framework for Java. JUnit is based on a TestCase concept: each
TestCase contains a set of assertions; if any of these assertions fail, the TestCase
fails. To run unit tests you need to download JUnit from http://junit.org/
index.html. Unpack the distribution and copy junit.jar to your classpath; that's
the only fi le we need to run our example (in addition to the OSWorkfl ow libraries
we've used before).

For this example, we'll build a JUnit TestCase with a set of assertions about the
current steps and available actions of a sample WorkflowDescriptor. You can
extend this example with your own set of assertions, as they vary across business
processes. Here's the TestCase code:

 package packtpub.osw;

import java.util.Collection;
import java.util.HashMap;
import junit.framework.TestCase;
import com.opensymphony.workflow.Workflow;
import com.opensymphony.workflow.basic.BasicWorkflow;
import com.opensymphony.workflow.config.Configuration;
import com.opensymphony.workflow.config.DefaultConfiguration;
import com.opensymphony.workflow.spi.Step;

Chapter 4

[83]

/**
 * Basic workflow testcase
 */
public class WorkflowTestCase extends TestCase
{
 private Workflow workflow;
 private long workflowId;
 /** Creates a workflow instance for testing. **/
 public void setUp()
 {
 final String wfName = "holiday2";
 workflow = new BasicWorkflow("test");
 Configuration config = new DefaultConfiguration();
 workflow.setConfiguration(config);
 try
 {
 workflowId = workflow.initialize(wfName, 100, new HashMap());
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public void testWorkflow()
 {
 try
 {
 int[] availableActions =
 workflow.getAvailableActions(workflowId,null);
 assertEquals("Unexpected number of available actions", 1,
 availableActions.length);
 assertEquals("Unexpected available action", 1,
 availableActions[0]);
 Collection currentSteps =
 workflow.getCurrentSteps(workflowId);
 assertEquals("Unexpected number of current steps", 1,
 currentSteps.size());
 Step currentStep = (Step) currentSteps.iterator().next();
 assertEquals("Unexpected current step", 1,
 currentStep.getStepId());
 } catch (Exception e)
 {
 e.printStackTrace();
 fail();
 }
 }
}

Using OSWorkfl ow in your Application

[84]

T he setup() method is the fi rst thing to be executed by JUnit by convention. Our test
extends from TestCase as every JUnit test does, and the testWorkflow()method
is the one executed by the framework after the setup() method. All methods
that start with the name "test" will be executed as part of the TestCase. In the
testWorkflow() method, you'll notice several assertEquals invocations; these are
the JUnit assertions. For example, take the following block of code:

 int[] availableActions =
 workflow.getAvailableActions(workflowId,null);
 assertEquals("Unexpected number of available actions", 1,
 availableActions.length);
 assertEquals("Unexpected available action", 1,
 availableActions[0]);

First, we will query the available actions of the Workflow instance, which we created in
the setUp() method. Then, we will test the assertion of the number of available actions
(in this case, it's just one) and the identifi er of the available action (in this case, 1).

The second block checks that the new instance is in exactly one current step and this
step has the identifi er 1:

 Collection currentSteps =
 workflow.getCurrentSteps(workflowId);
 assertEquals("Unexpected number of current steps", 1,
 currentSteps.size());
 Step currentStep = (Step) currentSteps.iterator().next();
 assertEquals("Unexpected current step", 1,
 currentStep.getStepId());

Finally in the catch block, there's one fail() method to cancel the test if anything
goes wrong.

 } catch (Exception e)
 {
 e.printStackTrace();
 fail();
 }

When we are done with coding the unit test, it's time to run it, and verify the
assertion, thus validating the user requirements about the business process.

Chapter 4

[85]

 Running the Tests
T he JUnit testing framework is made up of only one JAR fi le, junit.jar. To run
the TestCase, you must have this JAR in your classpath and must execute the
following command:

C:\org.junit_3.8.1>java -cp junit.jar;osworkflow-2.8.0.jar;
commons-logging.jar;
propertyset-1.4.jar
 junit.textui.TestRunner.packtpub.osw.WorkflowTestCase;

This command will invoke the JUnit default TestRunner on our packtpub.osw.
WorkflowTestCase. TestRunner is a class responsible for executing each TestCase
and returning the success or failure code of each one. JUnit has several TestRunners,
some text-based and others graphical. Refer to the JUnit documentation for
more details.

The output of the previous command is as follows:

C:\org.junit_3.8.1>java -cp junit.jar;osworkflow-2.8.0.jar;
commons-logging.jar;
propertyset-1.4.jar
 junit.textui.TestRunner.packtpub.osw.WorkflowTestCase;

Time: 0,25

OK (1 test)

C: \org.junit_3.8.1>

The TestRunner tells us that the test fi nished OK with no failures. This indicates
that the process defi nition is complete enough to cover all the user requirements.
You should run this unit test every time you make changes to the business process
descriptor. This assures that the requirements are fulfi lled and serves as a
regression testing.

Integrating with Spring
I n this section we'll discuss the integration of OSWorkfl ow with the Spring
lightweight object container.

Spring is an object container, specifi cally an Inversion of Control (IoC) container.
IoC containers manage their component's dependencies and lifecycle. Component
dependencies are managed declaratively via injection. This way each component
only knows its dependency interface but not its implementation. The implementation
is the one instantiated by the container and set to the component as an interface, so
you don't need to create new object dependencies inside your code. This means no
more use of the new keyword in Java.

Using OSWorkfl ow in your Application

[86]

 The Object Registry—BeanFactory
S pring uses the concept of a BeanFactory. This BeanFactory is an application-wide
registry and manages components. It is responsible for instantiating and injecting
objects and their dependencies.

OSWorkfl ow can be integrated with the Spring container as a bean in the
BeanFactory. In this way you can declaratively manage OSWorkfl ow dependencies.

In addition to this native integration, OSWorkfl ow can utilize Spring-managed beans
for Functions, Conditions, and other components.

The current Spring version supported by OSWorkfl ow is 2.0. To download the
Spring Framework, go to www.springframework.org. To include Spring in your
application, just put the spring.jar fi le in the classpath. For each module you
use, several different third-party libraries are required; in this example, only the
hibernate3.jar fi le is needed.

The Spring BeanFactory's beans are usually defi ned in an XML fi le called
BeanFactory.xml. This fi le must reside in the classpath and contains each bean and
its dependencies declarations. A sample BeanFactory.xml fi le is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
 <bean id="Employee" class="packtpub.osw.Employee">
 <property name="salary">
 <value>1000</value>
 </property>
 </bean>
</beans>

The beans tag is the root element of the XML; all bean tags must be nested inside it.
The bean tag declares a new bean inside the BeanFactory. The id attribute serves as a
unique identifi er inside the BeanFactory and the class attribute marks the Java class
to be instantiated by refl ection.

The property tag tells Spring to set a value to the JavaBean name attribute, in this
case salary. The value element nested inside the property tag defi nes the value
to be set, in this case 1000. This value can be converted automatically by Spring,
depending on the type of the target JavaBean property.

Note that the Spring convention is to create only once instance per
component—a singleton model. To override this behavior, you must set
the bean element's singleton attribute to false.

Chapter 4

[87]

O SWorkfl ow includes a sample BeanFactory.xml named osworkflow-spring.xml
along with its distribution to show how to incorporate OSWorkfl ow functionality
into your Spring-based application. This fi le lacks a Hibernate SessionFactory, so
it's not functional out of the box. It's important to understand each bean in this fi le,
so let's go fragment by fragment:

<bean id="workflowStore" class=
 "com.opensymphony.workflow.spi.hibernate.
 SpringHibernateWorkflowStore">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

The fi rst bean is the WorkflowStore. Its implementation, the
SpringHibernateWorkflowStore uses Hibernate for persistence and joins the
current Spring transaction by default. It has one mandatory JavaBean property to be
set, which is the Hibernate 3 SessionFactory.

After the WorkflowStore bean, comes the SpringWorkflowFactory that extends the
default XMLWorkflowFactory and enables the loading of the confi guration directly
from the container. The defi nition is as follows:

<bean id="workflowFactory" class="com.opensymphony.workflow.loader.
 SpringWorkflowFactory" init-method="init">
 <property name="resource">
 <value>workflows.xml</value>
 </property>
 <property name="reload">
 <value>true</value>
 </property>
</bean>

You will notice an init-method attribute. This tells Spring to call the method
with the same name as the attribute immediately after creating the bean, in this
case the init method. The following fragment below shows the defi nition of the
SpringConfiguration:

<bean id="osworkflowConfiguration" class=
 "com.opensymphony.workflow.config.SpringConfiguration">
 <property name="store">
 <ref local="workflowStore"/>
 </property>
 <property name="factory">
 <ref local="workflowFactory"/>
 </property>
</bean>

Using OSWorkfl ow in your Application

[88]

 Remember that the Configuration interface plays a coordination role between the
WorkflowStore (which manages instance data) and the WorkflowFactory (which
loads the template defi nitions). So it's natural to see the two mandatory properties
of the SpringConfiguration, a WorkflowStore and a WorkflowFactory. The two
previous bean defi nitions are referenced using the ref element.

Lastly, you must let Spring manage the Workflow implementation of your choice. In
the following code snippet, we will defi ne the BasicWorkflow implementation.

<bean id="workflow" class="com.opensymphony.workflow.basic.
 BasicWorkflow" singleton="false">
 <property name="configuration">
 <ref local="osworkflowConfiguration"/>
 </property>
</bean>

Note that the bean defi nition is a prototype one, that is, a bean with the singleton
attribute set to false. It is created every time your code calls the BeanFactory and
requests the workflow bean. This is a very important concept for you to grasp:
Spring creates only one instance of each bean by default.

The two JavaBean properties are the configuration (mandatory) and the
typeresolver (optional).

Lastly, we will add a Hibernate SessionFactory declaration to the XML:

<bean id="dataSource" class=
 "org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName">
 <value>org.hsqldb.jdbcDriver</value>
 </property>
 <property name="url">
 <value>jdbc:hsqldb:data/osworkflow</value>
 </property>
 <property name="username">
 <value>sa</value>
 </property>
 <property name="password">
 <value></value>
 </property>
</bean>

<bean id="sessionFactory" class=
 "org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="dataSource">
 <ref local="dataSource"/>
 </property>

Chapter 4

[89]

 <property name="mappingResources">
 <list>
 <value>com/opensymphony/workflow/spi/hibernate3/
 HibernateCurrentStep.hbm.xml</value>
 <value>com/opensymphony/workflow/spi/hibernate3/
 HibernateHistoryStep.hbm.xml</value>
 <value>com/opensymphony/workflow/spi/hibernate3/
 HibernateWorkflowEntry.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </prop>
 </props>
 </property>
</bean>

 This creates a new Hibernate SessionFactory available to the WorkflowStore
defi ned in the fi rst fragment. But before we declare a SessionFactory, we
must defi ne a datasource (in this case using the HSQL database) on which the
OSWorkfl ow instance data resides; this is the purpose of the dataSource bean.

The SessionFactory defi nes some Hibernate mapping fi les (using the list
element) included with OSWorkfl ow to map the entry and step objects to the
corresponding tables.

This defi nition is not currently included in the OSWorkfl ow distribution, and you
must manually merge the osworkflow-spring.xml fi le with it.

Using our BeanFactory
 Once the XML of the BeanFactory has been set up, you can invoke OSWorkfl ow
functionality inside your Spring application. The following code snippet shows
you how:

package packtpub.osw;

import java.util.Collections;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import org.springframework.core.io.ClassPathResource;
import com.opensymphony.workflow.Workflow;

public class SpringExample

Using OSWorkfl ow in your Application

[90]

{
 public static void main(String[] args)
 {
 XmlBeanFactory beanFactory =new XmlBeanFactory(
 new ClassPathResource("osworkflow-spring-hibernate3.xml");
 Workflow workflow = (Workflow) beanFactory.getBean("workflow");
 try
 {
 workflow.initialize("example", 100, null);
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

This example initializes the Spring BeanFactory, and then gets a workflow
bean. Note that the code is using the Workflow interface and never calls the
actual BasicWorkflow implementation. This really decouples our code from the
implementation details, leaving more room for the more important things such as
business logic.

This code is much simpler than the other versions shown before. You don't have to
care about creating or looking up DataSource, OSWorkflow Configuration, and
SessionFactory or instantiating new Workflow implementations. We also get rid of
the workflows.xml fi le by uniting all under the same XML fi le.

Transaction Support in Spring
 Before we use Spring and OSWorkfl ow in production, we must defi ne some
important things such as transactions.

Spring's transaction manager can use different strategies, such as JTA global
transactions, JDBC local transactions, or no transactions at all.

JTA is a standard J2EE API capable of creating and synchronizing
transactions across different systems. Most of the popular J2EE
application servers, such as JBoss, include a JTA subsystem.

The Spring container can also make use of AOP. AOP is a new programming
technique, which simplifi es the programming of applications by factoring out cross
concerns such as logging code, transaction handling code, etc.

Chapter 4

[91]

If you need to make use of transactions during use of Workfl ow instances, then
you must include a transactional aspect and weave it into the OSWorkfl ow code.
This weaving is done transparently by the container. The transactional aspect
is another bean referencing the OSWorkfl ow Workflow bean. Aspects are also
called interceptors.

<bean id="transactionInterceptor" class="org.springframework.
 transaction.interceptor.TransactionInterceptor">
 <property name="transactionManager">
 <ref local="transactionManager"/>
 </property>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

<bean id="workflow" class=
 "org.springframework.aop.framework.ProxyFactoryBean">
 <property name="singleton">
 <value>false</value>
 </property>
 <property name="proxyInterfaces">
 <value>com.opensymphony.workflow.Workflow</value>
 </property>
 <property name="interceptorNames">
 <list>
 <value>transactionInterceptor</value>
 <value>workflowTarget</value>
 </list>
 </property>
</bean>

<bean id="workflowTarget" class=
 "com.opensymphony.workflow.basic.BasicWorkflow" singleton="false">
 <constructor-arg>
 <value>test</value>
 </constructor-arg>
 <property name="configuration">
 <ref local="osworkflowConfiguration"/>
 </property>
</bean>

Using OSWorkfl ow in your Application

[92]

Now the original bean is substituted by a proxy, which wraps each Workflow
interface method with transaction handling code (the TransactionInterceptor
bean). The original workflow bean is now called the target bean of the interceptor.

With this addition, the initialize() method of the example code block in the
previous section would run on its own transaction, due to the PROPAGATION_REQUIRED
transaction attribute for all the Workflow interface methods.

The SpringTypeResolver
 By using a SpringTypeResolver you can describe the beans that implement the
Function or other resolver-supported interfaces and reference them by name
inside the WorkflowDescriptor. To defi ne a resolver, add this bean element to the
BeanFactory XML:

<bean id="workflowTypeResolver"
 class="com.opensymphony.workflow.util.SpringTypeResolver"/>

Then, modify the workflow bean defi nition by adding a new property element:

<bean id="workflow"
 class="com.opensymphony.workflow.basic.BasicWorkflow"
 singleton="false">
 <property name="configuration">
 <ref local="osworkflowConfiguration"/>
 </property>
 <property name="resolver">
 <ref local="workflowTypeResolver"/>
 </property>
</bean>

After that, add a Function bean that looks like this in the BeanFactory XML:

<bean id="SampleBusinessLogicFunction"
 class="com.packtpub.logic.SampleBizLogic" singleton="false" />

It can be declared and used in the WorkflowDescriptor in the following way:

<function type="spring">
 <arg name="bean.name">SampleBusinessLogicFunction</arg>
</function>

The new "spring" function type signals the WorkflowDescriptor to resolve the bean
name with the Spring BeanFactory via a call to the BeanFactory.getBean() method
with the bean name as the method parameter. The SampleBusinessLogicFunction
would obviously have to implement the classic FunctionProvider interface.

Chapter 4

[93]

The resolver is very useful for decoupling the function defi nition from the actual
function implementation.

This section doesn't try to be a tutorial for Spring. On the contrary it hardly brushes
the surface of all Spring features. Refer to the Spring project documentation for
more details.

Workflow Security
Every business process defi nes proper roles for each activity or step; for example
only managers can sign a check over 10, 000 dollars, or only the person who initiated
the process can fi nish it by approving or rejecting something.

OSWorkfl ow makes security very fl exible for the programmer by discriminating step
permissions and actions restrictions independently, and using the concept of step
ownership to assign tasks directly to some users.

In addition to this, OSWorkfl ow relies on the OSUser open-source component to
manage user authentication and authorization. OSUser has very powerful extension
mechanisms; but you are not bound to it, OSWorkfl ow can use any security package
by using Conditions for instance.

First we'll cover step permissions, which allow us to defi ne status or group
conditions to restrict entering any workfl ow process step.

Step Permissions
 The fi rst and basic security measure is the step permission. The step permission
denies or allows entry to the step to the current user by means of one or more
Conditions. Let's see an example:

<step id="1" name="First Draft">
 <external-permissions>
 <permission name="permA">
 <restrict-to>
 <conditions type="AND">
 <condition type="class">
 <arg name="class.name">
 com.opensymphony.workflow.util.StatusCondition
 </arg>
 <arg name="status">Underway
 </arg>
 </condition>
 <condition type="class">

Using OSWorkfl ow in your Application

[94]

 <arg name="class.name">
 com.opensymphony.workflow.util.AllowOwnerOnlyCondition
 </arg>
 </condition>
 </conditions>
 </restrict-to>
 </permission>
 </external-permissions>
 <actions>
…
</step>

 The external-permissions element is applicable inside the step element. It
contains one or more named permissions, which are restrictions nesting conditions.
These conditions are evaluated; if they are true, the user has permission, otherwise
the user cannot enter the step. Also, if the permission fails, the user has no available
actions from that step.

In this example, if the workfl ow status is Underway and the owner is invoking the
process, the permission predicate evaluates to true, enabling access to the user.

You can query the current permissions needed for the execution of the step by calling
the getSecurityPermissions() method, which receives the workfl ow identifi er
and an inputs map:

List perms = workflow.getSecurityPermissions(workflowId, null);

This method returns a java.util.List of permission names in string form.

Action Restrictions
 Sometimes a lot of users have access to the step, but each role has an action dedicated
to it. For securing individual actions there are action restrictions. A restriction is
simply a condition that must be met for the user to execute the action. Take a look at
the following descriptor snippet:

<action id="2" name="Sign Up For Editing">
 <restrict-to>
 <conditions type="AND">
 <condition type="class">
 <arg name="class.name">
 com.opensymphony.workflow.util.StatusCondition
 </arg>
 <arg name="status">Queued</arg>
 </condition>

Chapter 4

[95]

 <condition type="class">
 <arg name="class.name">
 com.opensymphony.workflow.util.OSUserGroupCondition
 </arg>
 <arg name="group">bars
 </arg>
 </condition>
 </conditions>
 </restrict-to>
</action>

 In this example, all the conditions must evaluate to true (AND operator) and the action
will became available to the user when getAvailableActions() is called.

Step Ownership
 Every step has an attribute called the owner. This attribute is useful for assigning
ownership of a step to a user. In this way you can defi ne Conditions that require
access to the step owner or you can query the step by its owner.

The owner attribute for the step is set in the result that provoked the transition to
it. The owner attribute too is subjected to variable interpolation. The next descriptor
fragment shows an unconditional-result that tells the engine to go to step 2 and
set the owner of step 2 to the same name as that of the current user:

<results>
<unconditional-result old-status="Finished" step="2"
 owner="${caller}"/>
</results>

Extending User and Group Authentication and
Authorization
 By default, OSWorkfl ow will look up an OSUser user object. It also has several built-
in conditions to handle this type of users.

UserManager um = UserManager.getInstance();
User test = um.createUser("jdoe");
test.setPassword("test");
Group foos = um.createGroup("foos");
Group bars = um.createGroup("bars");
Group bazs = um.createGroup("bazs");

 test.addToGroup(foos);

Using OSWorkfl ow in your Application

[96]

 test.addToGroup(bars);
 test.addToGroup(bazs);

workflow = new BasicWorkflow("jdoe");

OSUser has a singleton UserManager responsible for managing users and groups.
This code snippet creates a user named jdoe with a password, and assigns it to
three groups.

After that a new workfl ow is instantiated with the user's name. OSWorkfl ow
automatically binds the OSUser user and his or her built-in user.

For more advanced security requirements and to follow the security architecture
your company has you have to extend OSUser. OSUser supports a very large range
of pluggable providers for each function:

Credentials: The process of verifying that the user is authentic.
Access Control: This is used for determining whether a user is allowed to
perform a certain task.
Profi le: This has personal details and data associated with the user.
Management: This allows the underlying data to be modifi ed.

The osuser.xml fi le is the main confi guration fi le for OSUser. Here, you can
confi gure the different built-in pluggable providers or a custom made one.

<opensymphony-user>
 <provider class="com.opensymphony.user.provider.memory.
 MemoryAccessProvider" />
 <provider class="com.opensymphony.user.provider.memory.
 MemoryCredentialsProvider" />
 <provider class="com.opensymphony.user.provider.memory.
 MemoryProfileProvider" />
 <authenticator class="com.opensymphony.user.authenticator.
 SmartAuthenticator" />
</opensymphony-user>

OSUser has built-in providers for LDAP, plain fi les, UNIX, and Windows NT users,
PAM, JAAS, and JDBC.

By using OSUser you can extend the security of OSWorkfl ow. If none of the security
providers suits your needs, you can create a new one or alternatively create a new
security mechanism inside OSWorkfl ow.

•

•

•

•

Chapter 4

[97]

Summary
This chapter covered a lot of ground; fi rst we learned how to confi gure OSWorkfl ow
to load XML descriptors, and then we took a very through view of the OSWorkfl ow
API to use it inside our applications as an embedded workfl ow engine.

Later we saw the persistence alternatives OSWorkfl ow has to store the workfl ow
descriptor and instance data. We also saw the JUnit unit-testing framework that
allows us to verify the correctness and validate the functional requirements of our
business processes.

We saw that Spring enables us to decouple our application with clear separation
of concerns and declarative transactions and security. OSWorkfl ow integrates
seamlessly with Spring benefi ting from of all it features.

The chapter ended with the description of the different built-in security mechanisms
of OSWorkfl ow such as actions and step restrictions. We also learned how to extend
the OSWorkfl ow user and group directory by using OSUser.

The next chapter is about the JBoss Rules engine, a very effi cient way to decouple
and reuse the business logic inside our business processes.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

