
Chapter
• Introduction to Feature Teams 154

• Avoid…Single-function teams 161

• Avoid…Component teams 161

• Try…Feature teams 180

• Transition 195

Book
1 Introduction 2
Thinking Tools
2 Systems Thinking 10

3 Lean Thinking 40

4 Queueing Theory 94

5 False Dichotomies 126

6 Be Agile 140

Organizational Tools
7 Feature Teams 150

8 Teams 194

9 Requirement Areas 218

10 Organization 230

11 Large-Scale Scrum 288

Miscellany
12 Scrum Primer 310

13 Recommended Readings 332

14 Bibliography 338

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

Practices for
Scaling Lean & Agile

Development
Large, Multisite, and Offshore Products

with Large-Scale Scrum

Craig Larman
Bas Vodde

150

Chapter

7

Excerpt from Scaling Lean & Agile Develop-
ment: Thinking and Organizational Tools for
Large-Scale Scrum, Larman & Vodde, Addison-
Wesley. Copyright (c) 2009. All rights reserved.

See also the companion book Practices for Scaling
Lean & Agile Development: Large, Multisite, and Off-
shore Product Development with Large-Scale Scrum,
Larman & Vodde, Addison-Wesley.

FEATURE TEAMS

Better to teach people and risk they leave, than not and risk they stay
—anonymous

INTRODUCTION TO FEATURE TEAMS

Figure 7.1 shows a feature team—a long-lived,1 cross-functional
team that completes many end-to-end customer features, one by one.

Figure 7.1 feature
team—long-lived,
cross-functional,
learning-oriented,
multi-skilled people

1. A misunderstanding is that new teams re-form for each feature. Not
true. A great feature team may stay together for years.

feature team
long-lived, cross-functional

customer-
centric
feature

potentially
shippable
product

increment

Product
Owner

Customer DocDeveloper
Developer

Analyst

Tester Architect

This figure could be misinterpreted: A feature team does not have a
person who is only a Developer and does not have a person who is
only a Tester. Rather, people have primary skills such as Developer and
Tester, and also other skills—and are learning new areas. Team
members may help in several areas to complete the feature. An
'architect' may write automated tests; a 'tester' may do analysis.

Interaction
Designer

151

7 — Feature Teams

In Scrum and other agile methods the recommended team structure
is to organize teams by customer-centric features. Jim Highsmith, in
Agile Project Management [Highsmith04], explains:

Feature-based delivery means that the engineering team builds
[customer-centric] features of the final product.

lean thinking
wastes p. 59

In lean thinking, minimizing the wastes of handoff, waiting, WIP,
information scatter, and underutilized people is critical; cross-func-
tional, cross-component feature teams are a powerful lean solution
to reduce these wastes.

Why study the following in-depth analysis? Because feature teams
are a key to accelerating time-to-market and to scaling agile devel-
opment, but a major organizational change for most—changing
team structure is slow work, involving learning, many stakeholders,
and policy and mindset issues. If you’re a change agent for large-
scale agility, you need to really grasp the issues.

Figure 7.2 a long-
lived feature team;
developers, testers,
and others create a
complete customer
feature

Scrum team
p. 314

A proper Scrum team is by definition a feature team, able to do all
the work to complete a Product Backlog item (a customer feature).
Note that Scrum team (feature team) members have no special title
other than “team member.” There is not emphasis on ‘developer’ ver-
sus ‘tester’ titles. The goal is to encourage multi-skilled workers and
“whole team does whole feature.” Naturally people have primary
specialities, yet may sometimes be able to help in less familiar areas
to get the job done, such as an ‘analyst’ helping out with automated
testing. The titles in Figure 7.1 should not be misinterpreted as pro-
moting working-to-job-title, one of the wastes in lean thinking.

152

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

cross-functional
team p. 197

Feature teams are not a new or ‘agile’ idea; they have been applied
to large software development for decades. They are a refinement of
cross-functional teams, a well-researched proven practice to
speed and improve development. The term and practice was popu-
larized at Microsoft in the 1980s and discussed in Microsoft Secrets
[CS95]. Jim McCarthy [McCarthy95], the former development lead
of Visual C++, described feature teams:

Feature teams are about empowerment, accountability, identity,
consensus and balance…

Empowerment—While it would be difficult to entrust one
functional group or a single functional hierarchy, such as Devel-
opment, for instance, with virtually absolute control over a par-
ticular technology area, it’s a good idea to do that with a
balanced multi-disciplinary team. The frontline experts are the
people who know more than anyone else about their area, and it
seems dumb not to find a way to let them have control over their
area.

Accountability—… If a balanced group of people are mutually
accountable for all the aspects of design, development, debug-
ging, QA, shipping, and so on, they will devise ways to share
critical observations with one another. Because they are
accountable, if they perceive it, they own it. They must pass the
perception to the rest of the team.

Identity—… With cross-functional feature teams, individuals
gradually begin to identify with a part of the product rather
than with a narrow specialized skill.

Consensus—Consensus is the atmosphere of a feature team.
Since the point of identification is the feature rather than the
function, and since the accountability for the feature is mutual,
a certain degree of openness is safe, even necessary. I have
observed teams reorganizing themselves, creating visions, real-
locating resources, changing schedules, all without sticky con-
flict.

Balance—Balance on a feature team is about diverse skill sets,
diverse assignments, and diverse points of view.

153

7 — Feature Teams

Feature teams are common in organizations learning to deliver
faster and broaden their skills. Examples include Microsoft, Valtech
(applied in their India center for agile offshore development), the
Swedish software industry [OK99], Planon [Smeets07], and telecom
industry giant Ericsson [KAL00]. The report on Ericsson’s feature
teams clarifies:

The feature is the natural unit of functionality that we develop
and deliver to our customers, and thus it is the ideal task for a
team. The feature team is responsible for getting the feature to
the customer within a given time, quality and budget. A feature
team needs to be cross functional as it needs to cover all phases
of the development process from customer contact to system test,
as well as all areas [cross component] of the system which is
impacted by the feature.

To improve development on large products (one sub-project may be
one million person hours) in their GSM radio networks division,
Ericsson applies several practices supporting agility, including fea-
ture teams and daily builds. It’s no coincidence that both these prac-
tices were popularized by Microsoft in the 1990s; Ericsson also
understands the synergy between them [KA01]:

Daily build can only be fully implemented in an organization
with predominantly customer feature design responsibility.

… The reasons why feature responsibility is a prerequisite for
taking advantage of daily build is the amount of coordination
and planning needed between those responsible for delivering
consistent parts of each module that can be built. … In a feature
team this coordination is handled within the team.

In another book describing the successful practices needed for scal-
ing agile development, Jutta Eckstein similarly recommends “verti-
cal teams, which are focused around business functionality”
[Eckstein04]. Feature teams do ‘vertical’ end-to-end customer fea-
tures (GUI, application logic, database, …) rather than ‘horizontal’
components or layers. In her more recent scaling book she again
emphasizes “In order to always keep the business value of your cus-
tomer in mind, there is only one solution: having feature teams in
place” [Eckstein09].

154

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

multi-skilled
workers p. 205

A common misunderstanding is that each feature team member
must know everything about the code base, or be a generalist. Not
so. Rather, the team is composed of specialists in various software
component areas and disciplines (such as database or testing). Only
collectively do they have—or can learn—sufficient knowledge to
complete an end-to-end customer feature. Through close collabora-
tion they coordinate all feature tasks, while also—important point—
learning new skills from each other, and from extra-team experts. In
this way, the members are generalizing specialists, a theme in
agile methods [KS93, Ambler03], and we reduce the waste of
underutilized people (working only in one narrow speciality), a
theme in lean thinking.

long-lived teams
p. 200

To summarize the ideal feature team2:

work redesign
p. 235

Feature teams work independently by being empowered and given
the responsibility for a whole feature. Advantages include:

Feature Team

❑ long-lived—the team stays together so they can ‘jell’ for
higher performance; they take on new features over time

❑ cross-functional and cross-component

❑ co-located

❑ work on a complete customer-centric feature, across all com-
ponents and disciplines (analysis, programming, testing, …)

❑ composed of generalizing specialists

❑ in Scrum, typically 7 ± 2 people

2. A Scrum feature team is typically stable, long-lived. The name “fea-
ture team” was first popularized by Microsoft, but is also used in the
(relatively rare) method Feature-Driven Development (FDD).
However, in FDD a “feature team” is only a short-term group
brought together for one feature and then disbanded. Such groups
have the productivity disadvantage of not being ‘jelled’—a rather
slow social process—and the disadvantage of not providing stable
work relationships for people.

155

7 — Feature Teams

❑ increased value throughput—focus on delivering what the
customer or market values most

❑ increased learning—individual and team learning increases
because of broader responsibility and because of co-location
with colleagues who are specialists in a variety of areas

– critical for long-term improvement and acceleration; reduces
the waste of underutilized people

❑ simplified planning—by giving a whole feature to the team,
organizing and planning become easier

– for example, it is no longer necessary to coordinate between
single-specialist functional and component teams

❑ reduced waste of handoff—since the entire co-located fea-
ture team does all work (analysis, design, code, test), handoff is
dramatically reduced

❑ less waiting; faster cycle time—the waste of waiting is
reduced because handoff is eliminated and because completing
a customer feature does not have to wait on multiple parties
each doing part of the work serially

❑ self-managing; improved cost and efficiency—feature
teams (and Scrum) do not require a project manager or matrix
management for feature delivery, because coordination is triv-
ial. The team has responsibility for end-to-end completion and
for coordinating their work with others. Data shows an inverse
relationship between the number of managers and develop-
ment productivity, and also that teams with both an internal
and external focus are more likely to be successful [AB07]. Fea-
ture teams are less expensive—there isn’t the need for extra
overhead such as project managers.

– For example [Jones01]: “The matrix structure tends to raise
the management head count for larger projects. Because soft-
ware productivity declines as the management count goes up,
this form of organization can be hazardous for software.”

❑ better code/design quality—multiple feature teams working
on shared components creates pressure to keep the code clean,
formatted to standards, constantly refactored, and surrounded
by many unit tests—as otherwise it won’t be possible to work

156

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

with. On the other hand, due to long familiarity, component
teams live with obfuscated code only they can understand.

❑ better motivation—research [HO80, Hackman02] shows that
if a team feels they have complete end-to-end responsibility for
a work item, and when the goal is customer-directed, then
there is higher motivation and job satisfaction—important fac-
tors in productivity and success.

❑ simple interface and module coordination—one person or
team updates both sides of an interface (caller and called) and
updates code in all modules; because the feature team works
across all components; no need for inter-team coordination.

❑ change is easier—changes in requirements or design (we
know it’s rare, but we heard it happened somewhere once) are
absorbed by one team; multi-team re-coordination and re-plan-
ning are not necessary.

AVOID…SINGLE-FUNCTION TEAMS

cross-functional
teams p. 197

A Scrum feature team is cross-functional (cross-discipline), com-
posed of testers, developers, analysts, and so on; they do all work to
complete features. One person will contribute primary skills (for
example, interaction deisgn or GUI programming) and also second-
ary skills. There is no separate specification team, architecture
team, programming team, or testing team, and hence, much less
waiting and handoff waste, plus increased multiskill learning.

AVOID…COMPONENT TEAMS

An old approach to organizing developers in a large product group is
component teams—programmer groups formed around the archi-
tectural modules or components of the system, such as a single-spe-
ciality GUI team and component-X team. A customer-centric feature
is decomposed so that each team does only the partial programming
work for their component. The team owns and maintains their com-
ponent—single points of specialization success or failure.

157

7 — Feature Teams

In contrast, feature teams are not organized around specific compo-
nents; the goal is a cross-component team that can work in all mod-
ules to complete a feature.

What About Conway’s Law?

Long ago, Mel Conway [Conway68] observed that

[…] there is a very close relationship between the structure of a
system and the structure of the organization which designed it.

… Any organization that designs a system […] will inevitably
produce a design whose structure is a copy of the organization’s
communication structure.3

That is, once we define an organization of people to design some-
thing, that structure strongly influences the subsequent design—
typically in a one-to-one homomorphism. A striking example Con-
way gave was

[An] organization had eight people who were to produce a
COBOL and an ALGOL compiler. After some initial estimates
of difficulty and time, five people were assigned to the COBOL
job and three to the ALGOL job. The resulting COBOL compiler
ran in five phases, the ALG0L compiler ran in three.

Why raise this topic? Because “Conway’s Law” has—strangely—
been incorrectly used by some to promote component teams, as if
Conway were recommending them. But his point was very different:
It was an observation of how team structure limits design, not a rec-
ommendation. Cognizant of the negative impact, he cautioned:

Components (layer, class, …) still exist, and we strive to create
good components, but we do not organize teams by these.

3. In [Brooks75] this was coined Conway’s Law.

158

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

To the extent that an organization is not completely flexible in
its communication structure, that organization will stamp out
an image of itself in every design it produces.

… Because the design that occurs first is almost never the best
possible, the prevailing system concept [the design] may need to
change. Therefore, flexibility of organization is important to
effective design. Ways must be found to reward design manag-
ers for keeping their organizations lean and flexible.

In this way, Conway underlines a motivation for feature teams.

In Microsoft Secrets [CS95], Brad Silverberg, senior VP for Windows
and Office, explained their emphasis on feature teams, motivated by
the desire to avoid the effects of “Conway’s Law”:

The software tends to mirror the structure of the organization
that built it. If you have a big, slow organization, you tend to
build big, slow software.

Disadvantages

It is extraordinary the amount of delay, overhead, unnecessary man-
agement, handoff, bad code, duplication, and coordination complex-
ity that is introduced in large groups who organize into component
teams, primarily driven by two assumptions or fears: 1) people can’t
or shouldn’t learn new skills (other components, testing, …); and 2)
code can’t be effectively shared and integrated between people. The
first assumption is fortunately not so, and the second, more true in
the 1970s, has been resolved with agile engineering practices such
as continuous integration and test-driven development (TDD).

Component teams seemed a logical structure for 1960s or 1970s
sequential life cycle development with its fragile version control,
delayed integration, and weak testing tools and practices because
the apparent advantages included:

❑ people developed narrow specialized skill, leading to appar-
ently faster work when viewed locally rather than in terms of
overall systems throughput of customer-valued features, and
when viewed short-term rather than long-term

159

7 — Feature Teams

❑ those specialists were less likely to break their code

❑ there were no conflicting code changes from other teams

Fortunately, there has been much innovation since the 1960s. New
life cycle and team structures have been discovered, as have power-
ful new version-control, integration, and testing practices.

Systems and lean thinking invite us to ask, “Does a practice globally
optimize value throughput with ever-faster concept-to-cash cycle
time, or locally optimize for a secondary goal?” From that perspec-
tive, let’s examine the disadvantages of a component team…

Promotes Sequential Life Cycle Development and Mindset

Customer features don’t usually map to a single component nor,
therefore, to a single component team; they typically span many
modules. This influences organization of work.

Who is going to do requirements analysis? If several component
teams will be involved, it is not clear that any particular one of them
should be responsible for analysis. So, a separate analyst or analyst
team does specification in a first step.

Who is going to do high-level design and planning? Again, someone
before the component teams will have to do high-level design and
plan a decomposition of the feature to component-level tasks. She is
usually titled an architect or systems engineer; in [Leffingwell07]
this role is called requirements architect. In this case, one usually
sees a planning spreadsheet similar to the following:

Who is going to test the end-to-end feature? This responsibility
doesn’t belong to any one component team, who only do part of the
work. So testing is assigned to a separate system-test team, and
they start high-level testing after development has finished—some-

Feature

Component
A B C D E …

Feature 1 x x x
Feature 2 x x x

…

160

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

times long after, as they need the work of multiple component teams
and these teams seldom finish their work at the same time. Plus,
they have a backlog of other features to test.

Now what do we have?

1. (before development) requirements analysis by a separate ana-
lyst

2. (before) high-level design and component-level task planning
by a separate designer

3. (during) implementation by multiple interdependent compo-
nent teams that have to coordinate partially completed work

4. (after) system testing of the feature

Back to a waterfall! There is massive handoff waste in the system
and plenty of delay. This is traditional sequential life cycle develop-
ment and mindset, even though—ironically—people may incorrectly
think they are doing Scrum or agile development simply because
they are doing mini-waterfalls in a shorter and iterative cycle
(Figure 7.3). But mini-waterfalls are not lean and agile development;
rather, we want real concurrent engineering.

Completing one non-trivial feature now typically takes at least five
or six iterations instead of one.4 And it gets worse: For very large
systems the organization adds a subsystem layer with a subsystem
architect and subsystem testing—each specialized and each adding
another phase delay before delivering customer functionality.

4. Five or six iterations is optimistic. With multiple component teams,
the handoff, waiting, and overhead coordination delays implementa-
tion over many iterations.

Component team structures and
sequential life cycle development are directly linked.

161

7 — Feature Teams

Figure 7.3 com-
ponent teams lead
to sequential life
cycle

Limits Learning

Consider this thought experiment, although it will never be
achieved: Option 1—Everyone working on the product can do every-
thing well. Option 2—Every person can do one (and only one) small
task extremely well, but nothing else. Which option allows faster
feature throughput? Which option has more bottlenecks? Which

Backlog Item 1
Backlog Item 2
Backlog Item 3
Backlog Item 4
...

Comp A
Team

Comp B
Team

Comp C
Team

Analyst System
Engineer

System
Testers

Iteration 1 Iteration 2
(probably later)

Iterations 3-5
(probably later

and more)

At least
iteration 6

(probably later)

Item 1

requirement
details

for Item 1

tasks by
component

realistically, not all
teams start on Item 1
programming at the
same iteration; they are
multitasking on many
partially done features

it is unlikely that the
system testers are
available to test
Item 1 as soon as
the last component
team has finished

realistically, not
available as
soon as the
analyst is
finished

Analysis

Design

Implementation

Test

Component teams create sequential life cycle development with
handoff, WIP queues, and single-specialist groups. This organizational
design is not Scrum or agile development, which are instead based on
true cross-functional teams that do all work for a feature without
handoff. This "mini-waterfall" development is sometimes confused as
agile development; that is a misunderstanding.

code

162

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

offers more adaptability? Although the perfection vision of option-1
isn’t possible, viewed along a continuum of desirability, we want to
encourage a learning organization that is moving in that direction—
reducing bottlenecks, people learning one area well, then two, …

Observations:

❑ Developing multi-skilled people takes plenty of learning oppor-
tunities and close work with different kinds of experts.

❑ More specifically, developing programmers who can help in sev-
eral components requires a variety of experiences and mentors.

❑ Data shows an extraordinary variance in individual program-
mer productivity—studies suggest an average of four times
faster in the top versus bottom quartile [Prechelt00].

There’s a strong link in software development between what you
know and what you can do well—software is the quintessential
knowledge-sensitive profession. In short: There are great business
benefits if we have skilled developers who are constantly learning.

This learning has preconditions, of management responsibility:

❑ slack5

❑ a structure to support continual learning

– but there’s a systemic flaw in component teams…

How do developers become skilled in their craft and broadly knowl-
edgeable about their product? We asked Pekka Laukkanen—an
experienced developer and creator of the Robot test framework
[Laukkanen06, Robot08]—a question: “How do you become a great
developer?” He thought about it carefully and answered: “Practice—
and this means not just writing lots of code, but reflecting on it. And
reading others’ code because that’s where you learn to reflect on your
own.”

Yet, in traditional large-product groups with component teams, most
developers know only a narrow fragment of the system, and most
salient, they don’t see or learn much that is new.

5. See Slack [DeMarco01] on the need for slack to get better.

163

7 — Feature Teams

And on the other hand, there are always a few wonderful people who
know a lot about the system—the people you would go to for help on
an inexplicable bug. Now, when you ask how that’s possible, a com-
mon answer will be, “He knows everything since he always reads
everybody’s code.” Or, “He’s worked on a lot of different code.” Inter-
estingly, such people are more common in large open source prod-
ucts; there is a culture and value of “Use the source, Luke”
[Raymond] that promotes reading and sharing knowledge via code.

Why does this matter? Because component teams inhibit developers
from reading and learning new areas of the code base, and more
broadly, from learning new things.

Contrast the organizational mindset that creates such a structure of
limited learning with the advice of the seminal The Fifth Discipline
[Senge94] in which MIT’s Peter Senge summarizes the focus and
culture of great long-lived companies: learning organizations. Lean
Process and Product Development [Ward06] also stresses this theme;
it summarizes the insight of Toyota’s new product development suc-
cess: It’s about creating lots of knowledge, and about continual learn-
ing. And Toyota Talent [LM07] asks the question: “How does Toyota
continue to be successful through good times and bad?” and answers
“The answer is simple: great people,” and

It is the knowledge and capability of people that distinguishes
any organization from another. For the most part, organizations
have access to the same technology, machinery, raw material,
and even the same pool of potential employees as Toyota. The
automaker’s success lies partially in these areas, but the full
benefit is from the people at Toyota who cultivate their success.

Isao Kato, one of the students of Taichii Ohno (father of the Toyota
Production System), said:

In Toyota we had a saying, “Mono zukuri wa hito zukuri”,
which mean “Making things is about making people.” [Kato06]

Yet what is the journey of the software developer in many large
product groups? After graduating from university, a young developer
joins a large company and is assigned to a new or existing compo-
nent. She writes the original code or evolves it, becoming the special-
ist. There she stays for years—apparently so that the organization

164

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

can “go faster” by exploiting her one specialty—becoming a single
point of success or failure, a bottleneck, and learning only a few new
things. The university did not teach her good design, so where did
she learn good from bad? How can she see lots of different code? How
can she see opportunities for reusable code? How can she help else-
where when there’s a need?

Component team (and single-function team) organizations gradually
incur a learning debt—learning that should have occurred but
didn’t because of narrowly focused specialists, short-term quick-fix
fire fighting, lack of reflection, and not keeping up with modern
developments. When the product is young, the pain of this debt isn’t
really felt. As it ages and the number of single-specialized teams—
the number of bottlenecks—expands from 5 to 35, this debt feels
heavier and heavier. Those of you involved in old large products
know what we mean.

Encourages Delivery of Easier Work, not More Value

Component specialists, like other single-specialists, create an orga-
nizational constraint or bottleneck. This leads to a fascinating sub-
optimization: Work is often selected based on specialty rather than
customer value.

Component teams are faster at developing customer features that
primarily involve their single-speciality component—if such single-
component customer features can be found (not always true). For
that reason, when people are sitting in a room deciding what to do
next, features are often selected according to what available compo-
nent teams can do best or quickest. This tends to maximize the
amount of code generated, but does not maximize the value deliv-
ered.6 Therefore, component teams are optimized for quickly devel-
oping features (or parts of features) that are easiest to do, rather than

Note that the problem is not specialization; it is single-specializa-
tion, bottlenecks, and team structures that inhibit learning in
new areas. To create a learning organization, we want a struc-
ture where developers can eventually become skilled in two
areas—or more. Component teams inhibit that.

165

7 — Feature Teams

of highest value. We once saw a component team assigned to code
their small part of a low-priority customer feature that was not due
for more than 18 months in the future, simply because it was easier
to plan that way.

Figure 7.4 lower-
value work chosen

Interestingly, this sub-optimization is often invisible because 1)
there isn’t prioritization based on a customer-value calculation or
the prioritization scheme consists of bizarre super-coarse-grained
variants such as “mandatory” versus “absolutely mandatory”; 2)
component teams tend to be busy fixing bugs related to their compo-
nent; and, 3) there is plenty of internal local-improvement work.
Everyone appears very busy—they must be doing valuable work!

6. Not only do more lines of code (LOC) not imply more value, more
code can make things worse. Why? Because there is a relationship
between LOC and defect rates and evolution effort. More code
equals more problems and effort. Great development groups strive
to reduce their LOC while creating new features, not increase it.
Since component teams have a narrow view of the code base, they
don’t see reuse or duplication issues.

Item 1
Item 2
Item 3

...

Item 8

…

Item 12

System

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

With component teams, there is a tendency to select
goals familiar for people, not for maximizing customer
value. For example, Component A Team does Backlog
Item 3 because it mostly involves Component A work.

166

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

The sub-optimization becomes clear when we create a real Product
Backlog, sorted by a priority that includes value (Figure 7.4).

The Resource Pool and Resource Manager Quick Fix

project versus
product p. 239

One quick-fix way that traditional resource management tackles the
priority problem is by creating projects according to which special-
ists are required and available [McGrath04]. Project managers
select people from a specialist resource pool and release them back
when finished. This gives rise to project groups or feature
projects, usually with matrix management. In such organizations
one hears people called ‘resources’ as though they were machine
parts and human or team dynamics had little importance on produc-
tivity or motivation (which is not the case).

Thus, with a resource pool, management twists the organization
around single-specialist constraints. It seems to work well on paper
or in a project management tool. But people are not machine parts—
they can learn, be inspired or de-motivated, gain or lose focus, etc. In
practice, resource pool and feature project management has disad-
vantages:

❑ lower productivity due to non-jelled project groups—
there is clear evidence that short-lived groups of people
brought together for a project—a “project group”—are corre-
lated with lower productivity [KS93].

work redesign
p. 235

❑ lower motivation and job satisfaction—I often lead a “love/
hate” exercise with many people in an enterprise to learn what
they, well… hate. In large groups focused around resource pools
and project groups, “we hate being part of a resource pool
thrown into multiple short-term groups” is always at or near
the top.

❑ less learning—more single-specialization as people seldom
work/learn outside their area.

❑ lower productivity due to multitasking—with resource
pool management it is common to create partial ‘resource’ allo-
cations where a person is 20% allocated to project-A, 20% to
project-B, and so forth.7 This implies increasing multitasking

167

7 — Feature Teams

and—key point—lots of multitasking reduces productivity in
product development, it does not improve it [DeMarco01].

❑ lower productivity and throughput due to increased
handoff and delay waste—the people in the temporary
group are often multitasking on many projects. If that’s the
case, it leads to another productivity/throughput impact: Since
they are not working together at the same time on the same
goal, there is delay and handoff between the members.

❑ lower productivity and increased handoff and delay due
to physical dispersion—the project group is rarely co-located
in the same room; members may be in different offices, build-
ings, or even cities (and time zones), and have little or no rela-
tionship with each other; physical and time zone dispersion of a
task group impacts productivity [OO00].

❑ lower productivity and higher costs due to more manag-
ers—if each temporary project group has a project manager
(usually in a matrix management structure), costs are higher
and productivity lower because of the inverse relationship
between management count and software productivity.

Go See p. 53 Observe the relationship between the lean “Go See” attitude and the
belief that it is skillful to have resource pools that optimize around
single-specialist constraints. People that do not spend regular time
physically close to the real value-add workers may believe in
resource pools and short-lived project groups because it appears on
paper—as with machine parts—to be flexible and efficient. Yet those
frequently involved in the real work directly see the subtle (but non-
trivial) problems.

Promotes Some Teams to Do “Artificial Work”

A corollary of the disadvantage of encourages delivery of easier work,
not more value is illustrated by an example: Assume the market
wants ten features that primarily involve components A–T and thus
(in the simplest case) component teams A–T. What do component
teams U–Z do during the next release? The market is not calling for
high-value features involving their components, and there may even

7. Or worse. We’ve even seen 10% partial project allocations!

168

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

be no requests involving their components. In the best case, they are
working on lower-value features—because that is all they can do. In
the worst case, there is an explicit or more frequently a subtle
implicit creation of artificial work for these teams so that component
team U can keep busy doing component-U programming, even
though there is no market driver for the work.

With component teams and large product groups there is often a
resource manager who tries to keep the existing teams busy (“100%
allocated”) by choosing and assigning this low-value or artificial
work, or by asking the underutilized teams for advice. Their focus is
the local optimization of “everyone doing their best”—generating
code according to what people know, rather than generating the
most value. And the work is sometimes ‘redesign’: If we don’t have
anything new, we’ll redo what we did before.8

More Code Duplication and Hence Developers

We once visited a client with many component teams and discussed
the link between this structure and code duplication. The client
asked, rhetorically, “Do you know how many XML parsers we have?”

see Legacy Code
in companion
book

Consider duplication: Good code is free of it, and great developers
strive to create less code as they build new features, through con-
stant refactoring. It’s difficult to see duplication or opportunities for
reuse in a code base with single-component specialists, because one
never looks broadly. Single-component specialists increase duplica-
tion. And so the code base grows ever larger than necessary, which
in turn demands more single-component specialists…9

8. Improving existing code is a good thing; our point is different.
9. Code-cloning statistics based on (imperfect) automated analysis of

large systems shows around 15% duplicated code [Baker95], but this
is probably an underrepresentation because such tools don’t
robustly find “implicit duplication” of different-looking code that
does the same thing. Anecdote: I’ve done refactoring (to remove
duplication) on large systems built by component teams, removing
explicit and implicit duplication; reduction averaged around 30%.

169

7 — Feature Teams

Figure 7.5 system
dynamics of
component teams
and number of
developers

Ever-Growing Number of Developers

Component teams create several forces to increase the number of
developers. One reason examined previously is the increased code
bulk due to duplication. A second reason involves the mismatch
between the existing component teams and the high-priority work,
as explained next and summarized in the system dynamics diagram,
Figure 7.5.

Component teams become boxes in the formal organization struc-
ture, each with its own manager. Several component teams form a
subsystem group or department with a second-level manager. This
leads to an interesting dynamic…

Example: Current release—A high-priority goal involves mostly
work in component or subsystem A, and therefore component-A or
subsystem-A groups work on it. They hire more people in the belief
it will make them go faster. Component-C team has lower-priority
goals and does not need or get more people. Next release—A high-
priority goal involves primarily work for component C. Now, they are
viewed as the bottleneck and so hire more people (see Figure 7.6).

We could have moved people from one component team to another,
and gradually taught them (through pair programming) to help,

code
duplication

of
component

teams

O

goal: faster work on a high-priority
feature mostly involving component A

amount of broad
cross-component

code insight

O

size of
component

teams

constraint: don�t
break up an existing
component team

constraint: don�t reassign an
existing component team
member to a new component

quick fix: hire more component
team A developers

component
LOC

170

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

instead of hiring more people. But this rarely happens. The other
component team already has work chosen for the release, so they
won’t wish to lose people. And there is a fear it will take too long to
learn anything to be helpful. Also, the mindset is that “it would be a
waste of our specialist to move her to another component team.”
Finally, moving people is inhibited by political and management sta-
tus problems—many managers don’t want to have a smaller group
(another force of local optimization). Conway formulated this well:

Parkinson’s law [Parkinson57] plays an important role… As
long as the manager’s prestige and power are tied to the size of
his budget, he will be motivated to expand his organization.
[Conway68]

Thus, the component-A team will grow, as will the component itself.
It may even eventually split into two new components, and hence
two new teams. The people will specialize on the new components.
In this way large product organizations tend to grow even larger.

Figure 7.6 ever-
growing size with
component teams

Item 1
Item 2
Item 3

...

Item 20

…

Item 42

current release:
need more people

next release:
need more people

System

next release

current release

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

171

7 — Feature Teams

Figure 7.7 chal-
lenges in planning—
coordination

Problems in Planning and Coordination

Scrum (and other agile methods) strive for an integrated product at
the end of every iteration with demonstrable customer functionality.
For most features this involves multiple component teams and
therefore complicates planning and coordination between teams.

Example: In the next iteration the goal is to do Product Backlog
items 1, 2, 3, and 4. Backlog item 1 (customer feature 1) requires
changes in component A and B. Item 2 requires changes in compo-
nent A, B, and C, and so forth. All teams depend on one another in
the iteration planning and need to synchronize their work during

Item 1
Item 2
Item 3
Item 4

...

…

System

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

With component teams, there is increased multitasking, as one component
team may work on several features in parallel, in addition to handling defects
related to "their" component. Multitasking is one of the wastes in lean
thinking, and correlated with reduction in productivity.

Project
Manager

With component teams, the overhead of a
project manager is required to coordinate
and see to completion a feature that spans
component teams and functional teams.

172

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

the iteration (see Figure 7.7)—a task that is often handled by a sep-
arate project manager. Even if we successfully plan the complex
interdependencies for this iteration, a delay in one team will have a
ripple effect through all component teams, often across several itera-
tions.

Delays Delivery of Value

Value can be delivered only when the work of multiple component
teams is integrated and tested. Figure 7.3 illustrates how compo-
nent teams promote sequential life cycle. So what? With a compo-
nent team organization, the work-in-progress (WIP) from a team
usually waits several iterations before it can be combined into a
valuable feature. This WIP, like all inventory, is one of the wastes in
lean thinking; it hides defects, locks up an investment, reduces flexi-
bility, and slows down the delivery of value. And in addition to the
straightforward sequential life cycle reasons already discussed, com-
ponent teams delay delivery as follows…

Example:

1. Item 1 in the Product Backlog involves component A. Compo-
nent team A will work on their part of item 1 next iteration.

2. Item 4 involves components A and C. Since component team A
is busy with item 1, they do not work on item 4.

3. Item 4 is the highest goal involving component C. Component
team C therefore works on their part of item 4 next iteration.

❑ First problem: Not every team is working on highest value.

❑ Second problem: After the iteration, item 4 (which needs code
in components A and C) can’t yet be integrated, tested, and
delivered, because of the missing component A code. Item 4
delivery has to wait for component team A.

Organizations try to solve this problem by the quick fix of creating a
role, called project manager or feature manager, for coordinat-
ing the work across teams and/or by creating temporary project
groups whose far-flung members multitask across multiple concur-
rent feature goals. Such tactics will never fundamentally resolve the

173

7 — Feature Teams

problem or support rapid development, since the problem is struc-
tural—baked into the organization, built into the system.

More Poor Code/Design

see Design in
companion

Perhaps the greatest irony of component teams is this: A mistaken
belief behind their creation is that they yield components with good
code/design. Yet, over the years we have looked closely at the code
across many large products, in many companies, and it is easy to see
that the opposite is true—the code in a component maintained by a
single-component team is often quite poor.10 For example, we will sit
to start pair programming with a component team member (who
knows we’ll be looking for great code), and with a slightly apologeti-
cally grin the programmer will say, “Yeah, we know it’s messy, but
we understand it.” What is going on?

❑ limited learning—as discussed above, developers are not
exposed to vast amounts of different code; this limits their
learning of good design.

❑ familiarity breeds obfuscation—when I stare at the same
complicated, obfuscated 10,000 lines of code month after month
it starts to be familiar and ‘clear’; I can no longer see how com-
plicated it is, nor does it especially bother me, because of long
exposure—so I am not motivated to deeply improve it.

❑ obfuscation and duplication-heavy large code bases
breed job security—some do think like this, especially in
groups where line management are not master programmers,
not looking at the code, not encouraging great, refactored code.

❑ no outside pressure to clarify, refactor, or provide many
unit tests for the code—no one other than the team of five
component developers (who are long familiar with the compli-
cated code) works on it; thus there is no pressure to continually
refactor it, reduce coupling, and surround it with many unit
tests so that it is clear and robustly testable for other people to
work on.

10. New developers joining an existing component team (i.e., compo-
nent) also report this observation.

174

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

The perpetuation of belief that component teams create great code is
an indicator of a lack of “Go See” behavior by first-level manage-
ment. If they were master developers (lean principle “my manager
can do my job better than me”) and regularly looking in depth across
the code base, they would see that on average, more—not less—fresh
eyes on the code makes it better.

Summary of Disadvantages

Platform Groups—Large-Scale Component Groups

In large product organizations, there often exist one or more lower-
level platform groups distinct from higher-level product groups. For
example, in one client’s radio networks division a platform group of
hundreds of people provides a common platform to several market-
visible products (each involving hundreds of people). Note that the
platform group and a higher-level product group that uses it are
essentially two very large component groups. There is no absolute
constraint that a separate platform group must exist; for example,
the software technologies and deployment environment are the
same in both layers. A higher-level developer could in theory modify
code in the lower-level ‘platform’ code—the boundary is arbitrary.

So, the long-term organizational change toward feature teams,
large-scale Scrum, and less handoff waste implies that an artificially
constructed platform group may merge into the customer-product

• promotes sequential life cycle
development and mindset

• limits learning by people working
only on the same components for
a long time—the waste of
underutilized people

• encourages doing easier work
rather than most valuable work

• promotes some component teams
to do “artificial work”

• causes long delays due to major
waiting and handoff wastes

• encourages code duplication

• unnecessarily promotes an ever-
growing number of developers

• complicates planning and syn-
chronization

• increases bottlenecks—single
points of success are also single
points of failure

• fosters more poor code/design

175

7 — Feature Teams

groups, with feature teams that work across all code. This is a multi-
year learning journey.

TRY…FEATURE TEAMS

Most drawbacks of component teams can be resolved with feature
teams (defined starting on p. 150). They enable us to put the
requirements analysis, interaction design, planning, high-level
design, programming, and system test responsibilities within the
team11, since they now have a whole end-to-end customer-feature
focus. Planning, coordinating, and doing the work are greatly simpli-
fied. Handoff and delay wastes are dramatically reduced, leading to
faster cycle time. Learning increases, and the organization can focus
on truly high-priority market-valued features. And because multiple
feature teams will work on shared components, sometimes at the
same time, it is essential that the code is clean, constantly refac-
tored, continually integrated, and surrounded by unit tests—as oth-
erwise it won’t be possible to work with.

11. Ideally, customer documentation is also put within the team.

Note a key insight: Feature teams shift the coordination chal-
lenge between teams away from upfront requirements, design,
and inter-team project management and toward coordination at
the code level. To see this, compare Figure 7.7 and Figure 7.8.
And with modern agile practices and tools, coordinating at the
code level is relatively easy. Naturally, developers and managers
unfamiliar with these practices don’t know this, and so continue
with upfront responses to the coordination challenge.

176

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

Figure 7.8 feature
teams shift the
coordination
problem to shared
code

As the shift to shared code coordination illustrates, a feature team
organization introduces new issues. In traditional development
these seemed difficult to solve. Fortunately, there are now solutions.

The following sections analyze these challenges and illustrate how
modern agile development practices ameliorate them, thus enabling
feature teams. Challenges or issues of feature teams include:

• broader skills and product
knowledge

• concurrent access to code

• shared responsibility for design

• different mechanism to ensure
product stability

• reuse and infrastructure work

• difficult-to-learn skills

• development and coordination of
common functional (for example,
test) skills that span members of
many feature teams

• organizational structure

• defect handling

Item 1
Item 2
Item 3

...

Item 8

…

Item 12

Team
Red

Team
Blue

Team
Green

Component
A

Component
B

Component
C

With feature teams, coordination issues shift toward the shared code
rather than coordination through upfront planning, delayed work, and
handoff. In the 1960s-70s this code coordination was awkward due
to weak tools and practices. Modern open-source tools and practices
such as TDD and continuous integration make this relatively simple.

177

7 — Feature Teams

Broader Skills and Product Knowledge

This is the opposite of the limits learning problem of component
teams. The feature team needs to make changes in any part of the
system when they are working on a customer feature.

First, not all people need to know the whole system and all skills.
The Product Owner and teams usually select a qualified feature
team for a feature, unless they have the time and desire for a ‘virgin’
team to invest in some deep learning in less familiar territory. In the
common case, the team members together need to already know
enough—or be able to learn enough without herculean effort—to
complete a customer-centric feature. Notice that feature teams do

Feature Teams versus Feature Projects

Feature teams are not feature projects. A feature project is organized around one fea-
ture. At the start, the needed specialists (usually developers from component teams or a
resource pool) are identified and organized into a short-lived group—a virtual project
group. The specialists are usually allocated a percentage of their time to work for the fea-
ture project. Feature teams and feature projects have important differences:

Long-life teams—A feature team, unlike a project group, may stay together for several
years. The team has an opportunity to jell and learn to work together. A well-working
jelled team leads to higher performance [KS93].

Shared ownership—In a feature team, the whole team is responsible for the whole fea-
ture. This leads to shared code ownership and cross-learning, which in the long run
increases degrees of freedom and reduces bottlenecks. In feature projects, developers only
update their particular single-specialty section of code.

Stable, simple organizational structure—Feature teams offer a simple structure; they
are the stable organizational units. Traditional project teams are ever-shifting and result
in matrix organizations, which degrades productivity.

Self-managing; improved cost and efficiency—Feature teams (and Scrum) do not
require overhead project managers, because coordination is trivial.

178

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

have specialized knowledge—that’s good. And, since learning is pos-
sible, they are slowly extending their specializations over time as
they take on features that require moderate new learning, strength-
ening the system of development over time (see Figure 7.9). This is
enhanced by more pair-work and group-work in a team with various
skills. We move beyond false dichotomies such as “specialization
good, learning new areas bad” and “generalists good, specialists
bad.”

Figure 7.9 special-
ization is good,
learning is good

Learning new areas of the code base is not a profound problem for
“moderately large” products, but beyond some tipping point12 it
starts to be a challenge.

requirement
areas p. 218

One solution is requirement areas. In traditional large product
development, component teams are usually grouped within a major
subsystem department. Similarly, when scaling the feature team
organization, we can group feature teams within a requirement
area—a broad area of related customer requirements such as “net-
work performance monitoring and tuning” or “PDF features.” To

12. It depends on size, quality of code, and unit tests, …

Item 1 needing ABC

Item 2 needing ADE

...

…

Team Red
with ABC

skills

Team Blue
with CDE

skills

Team Green
with ABEF

skills

Product Backlog

?

Item 2 will be given to
Team Blue or Green; skill
A or D will need learning

179

7 — Feature Teams

clarify: A requirement area is not a subsystem or architectural mod-
ule; it is a domain of related requirements from the customer per-
spective.

What’s the advantage? Most often, a requirement-area feature team
will not need to know the entire code base, since features in one area
usually focus across a semi-predictable subset of the code base. Not
always, but enough to reduce the scope of learning. Requirement-
area feature teams provide the advantage of feature teams without
the overwhelming learning challenge of a massive code base.13

But stepping back from the ‘problem’ of requiring broader knowl-
edge: Is it a problem to avoid, or an opportunity to go faster?

A traditional assumption underlying this issue is the notion that
assigning the existing best specialist for a task leads to better per-
formance. Yet this is an example of local optimization thinking—no
doubt locally and short-term it seems faster for code generation, but
does it increase long-term systems improvement and throughput of
highest market-valued features? In addition to the obvious bottle-
necking it promotes (thus slowing throughput of a complete feature),
does it make the organization as a whole speed up over time? As pre-
viously explored in the section on the disadvantages of component
teams:

Product groups that repeatedly rely on single-skill specialists
are limiting learning, reducing degrees of freedom, increasing
bottlenecks, and creating single points of success—and failure.
That does not improve long-term system throughput of highest
market-valued features or the ability to change quickly.

There is an assumption underlying concerns about broader product
knowledge: The assumption is that it will take a really long time for
a developer to learn a new area of the code base. And yet, in large
product groups, it is not uncommon for an existing developer to
move to a different component team and within four or five months
be comfortable—even shorter if the code is clean. It isn’t trivial, but
neither is it a herculean feat. Programmers regularly learn to work

13. A requirement-area feature team may eventually move to a new
area; we haven’t seen that yet.

180

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

on new code and in new domains all the time; indeed, it’s an empha-
sis of their university education.

Still, to dig deeper: Why is it hard to learn new areas of the code
base? Usually, the symptom is incredibly messy code and bad
design—a lack of good abstraction, encapsulation, constant refactor-
ing, automated unit tests, and so forth. That should be a warning
sign to increase refactoring, unit tests, and learning, not to avoid
new people touching fragile code—to strengthen rather than to live
with a weakness.

potential skills
p. 207

Learning new code and changing an existing code base is indeed a
learnable skill. It takes practice to become good, and people in fea-
ture teams get that practice and learn this skill.

Returning to the apparent quick-fix, short-term performance advan-
tage of choosing the best existing specialist for a task, this “common
sense” has also been questioned in a study [Belshee05a].

Development ran with one-week iterations. Each iteration the team
experimented with new practices. One experiment involved task
selection. A traditional approach may be called most qualified imple-
menter—the specialist who knows most about a task works on it.
The team experimented with a task selection method called least
qualified implementer—everyone selects the task they know least
about. Also, task selection was combined with frequent pair switch-
ing, called promiscuous pairing, each 90 minutes. First, the ini-
tial velocity did not drop significantly. Second, after two iterations
(two weeks) the velocity increased above their previous level. The
benefit of increased learning eventually paid off.

Belshee explains the above result with a concept called beginner’s
mind. “Beginner’s Mind happens when the thinker is unsure of his
boundaries. The thinker opens himself up and thoroughly tests his
environment… The whole mind just opens up to learning.”
[Belshee05b]

An experience report from Microsoft related to these practices:

The principles laid out in Belshee’s paper are not for the faint of
heart. They require dedication, commitment and courage. Dedi-
cation is required of each team member to strive for self

181

7 — Feature Teams

improvement. Commitment is needed for each team member to
ensure the values and principles will be followed and the team
will hold itself accountable. Courage, because the emotions that
Promiscuous Pairing invites will be not unlike the most fun and
scariest roller-coaster ever experienced. [Lacey06]

The studies illustrates the potential for acceleration when an orga-
nization invests in broadening learning and skill, rather than limit-
ing it through dependence on bottlenecks of single-specialists.

Concurrent Access to Code

As illustrated in Figure 7.8, one important difference between com-
ponent teams and feature teams is that the dependency and coordi-
nation between teams shifts from requirements and design to code.
Several people may concurrently edit the same source code file, typi-
cally a set of C functions, or a class in C++ or Java.

With weak or complex version-control tools and practices, common
in the 1980s and still promoted by companies such as IBM, this was
a concern. Fortunately, it isn’t an issue with modern free tools and
agile practices.

see Continuous
Integration in
companion

Old-generation and complex (and costly) version control systems
such as ClearCase defaulted to strict locking in which the person
making a change locked the source file so that no one else could
change it. Much worse, vendors promoted a culture of avoiding con-
current access, delaying integration, complex integration processes
involving manual steps, integration managers, and tool administra-
tors. This increased costs, complexity, bottlenecks, waiting, and rein-
forced single-team component ownership.

On the other hand, the practices and tools in agile and in open
source development are faster and simpler. Free open source tools
such as Subversion14 default to optimistic locking (no locking),

14. Subversion is likely the most popular version control tool worldwide,
and a de facto standard among agile organizations. Tip: It is no
longer necessary to pay for tools for robust large-scale development;
for example, we’ve seen Subversion used successfully on a 500-per-
son multisite product that spanned Asia and Europe.

182

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

and more deeply, have always encouraged—through teaching and
features—a culture of simplicity, shared code ownership, and con-
current access [Mason05]. With optimistic locking anyone can
change a source file concurrently. When a developer integrates her
code, Subversion automatically highlights and merges non-conflict-
ing changes, and detects if conflicts exist. If so, the tool easily allows
developers to see, merge, and resolve them.

An optimistic-locking, fast, simple tool and process are required
when working in an agile development environment and are a key in
eliminating problems related to concurrent access to code.

Optimistic locking could in theory lead to developers spending inor-
dinate time merging difficult changes and resolving large conflicts.
But this is resolved with continuous integration and test-driven
development, key practices in scaling agile and lean development.

see Continuous
Integration in
companion

parallel releases
p. 210

When developers practice continuous integration (CI) they inte-
grate their code frequently—at least twice a day. Integrations are
small and frequent (for example, five lines of code every two hours)
rather than hundreds or thousands of lines of code merged after
days or weeks. The chance of conflict is lower, as is the effort to
resolve. Developers do not normally keep code on separate “devel-
oper branches” or “feature branches”; rather, they frequently inte-
grate all code on the ‘trunk’ of the version-control system, and
minimize branching. Furthermore, CI includes an automated build
environment in which all code from the hundreds of developers is
endlessly, relentless compiled, linked, and validated against thou-
sands of automated tests; this happens many times each day.15

see Test in
companion

In test-driven development every function has many automated
micro-level unit tests, and all programming starts with writing a
new unit test before writing the code to be tested. Further, every fea-
ture has dozens or hundreds of automated high-level tests. This
leads to thousands of automated tests that the developer can rerun
locally after each merge step—in addition to their continual execu-
tion in the automated build system.

In lean thinking terminology, CI replaces big batches and long cycle
times of integration (the practice of traditional configuration man-

15. Note that this implies driving down the build time of a large system.

183

7 — Feature Teams

agement) with small batches and short cycles of integration—a
repeating lean theme.

Shared Responsibility for Design

In a traditional component team structure, each component has an
owner who is responsible for its design and ongoing “conceptual
integrity.” On the other hand, feature teams result in shared owner-
ship. This could—without the practices used in agile methods—lead
to a degradation of integrity. All that said, it must be stressed that
in reality, code/design degradation happens in many groups anyway,
regardless of structure; recall the reasons component teams ironi-
cally often live with obfuscated code (p. 173).

Continuous integration (CI) implies growing a system in small
steps—each meant to improve the system a little. In addition to inte-
gration of all code on the trunk multiple times daily and non-stop
automated builds running thousands of automated tests, CI with on-
going design improvement is supported by other practices:

see Design in
companion

❑ evolutionary design culture—since (as Conway points out)
the initial design vision is rarely great, and in any event since
software is ever-changing, encourage a culture in which people
view the design or architecture as a living thing that needs
never-ending incremental refinement

– a sequential life cycle with a single upfront architectural or
design phase gives the false message that the design is
something we define and build once, rather then continually
refine every day for the life of the system

❑ test-driven development—drive code development with
automated micro-unit tests and higher-level tests; each test
drives a small increment of functionality

– this leads to hundreds of thousands of automated tests

❑ refactoring; a key step—after each micro-change of a new unit
test and related solution code, perform a small refactoring step
to improve the code/design quality (remove duplication,
increase encapsulation, …)

184

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

– refactoring implies always leaving the code a little better
than we found it

– note that design quality means code quality; there is no real
‘design’ in software other than the source code [Reeves92]

be agile p. 140These CI practices support continuous design improvement with
feature teams, and the 9th agile principle: Continuous attention to
technical excellence and good design enhances agility. Plus, there are
strong connections between these agile practices and the lean princi-
ples Stop and Fix, Continuous Improvement, and the kaizen practice
of endless and relentless small steps of improvement—in this case,
“kaizen in code.”

Successfully moving from solo to shared code ownership supported
by agile practices doesn’t happen overnight. The practice of compo-
nent guardians can help. Super-fragile components (for which
there is concern16) have a component guardian whose role is to teach
others about the component ensures that the changes in it are skill-
ful, and help remove the fragility. She is not the owner of the compo-
nent; changes are made by feature team members. A novice person
(or team) to the component asks the component guardian to teach
him and help make changes, probably in design workshops and
through pair programming. The guardian can also code-review all
changes using a ‘diff ’ tool that automatically sends her e-mail of
changes. This role is somewhat similar to the committer role in
open source development.17 It is another example of the lean prac-
tices of regular mentoring from seniors and of increasing learning.

Another possible practice is establishing an architecture code
police [OK99]; to quote, “The architecture police is responsible for
keeping a close check on the architecture.” Note that since the only
real design is in the code, architecture code police are responsible for
continually looking at the code (not at documents), identifying weak-
nesses, and coaching others while programming—they are master-

16. A typical reason for concern about delicate components is that the
code is not clean, well refactored, and surrounded by many unit
tests. The solution is to clean it up (“Stop and Fix”), after which a
component guardian may not be necessary.

17. But the roles are not identical. Guardians (or ‘stewards’) do more
teaching and pair programming, and allow commits at any time.
Committers also teach, but less so, and control the commit of code.

185

7 — Feature Teams

programmer teachers. Architecture code police are a variant of com-
ponent guardians; they are responsible for overall code quality. But
no single person is responsible for a specific component. Warning:
This practice could devolve into a separate “PowerPoint architects”
group that is not focussed on the code, and not teaching through pair
work.

community of
practice p. 253

A related practice is used at Planon, a Dutch company building
workplace management solutions. The co-creator of Scrum, Jeff
Sutherland, wrote: “We have another Scrum company that has hit
Gartner Group’s magic [leaders]” [Sutherland07]. They have multi-
ple feature teams, each consisting of an architect, developers,
testers, and documentation people. There is also one lead architect,
but he is not responsible for defining the architecture and handing it
over to the team. Instead, he is “the initiator of a professional circle,
that includes all architects, to keep the cross-team communication
going.” Planon’s term professional circle is a community of prac-
tice, in which people with similar interest form a community to
share experiences, guide, and learn from each other [Wenger98,
WMS02]. At Planon, they have a community of practice for different
specialists such as architects, testers, and ScrumMasters
[Smeets07].

see Design in
companion

Another practice to foster successful shared design is the design
workshop. Each iteration, perhaps multiple times, the feature
team gets together for between “two hours and two days” around
giant whiteboard spaces. They do collaborative agile modeling,
sketching on the walls in a creative design conversation. If there are
component guardians or other technical leaders (that are not part of
the feature team) who can help guide and review the agile modeling,
they ideally also participate. See Figure 7.10.

For broad architectural issues joint design workshops (held
repeatedly) can help. Interested representatives from different fea-
ture teams (not restricted to ‘official’ architects) spend time together
at the whiteboards for large-scale and common infrastructure
design.18 Participants return to their feature team, teaching joint
insights in their local workshops and while pair programming.

18. Solutions for multisite joint design workshops are explored in the
Design chapter.

186

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

Handoff and partially done work (such as design specifications) are
wastes in lean thinking. To reduce this and to encourage a culture of
teaching, it is desirable that design leaders not be members of a sep-
arate group that create specifications, but rather be full-time mem-
bers on a feature team who also participate in joint design
workshops as a part-time architectural community of practice.

Figure 7.10 design
workshop with agile
modeling

New Mechanisms for Code Stability

Code stability in a component team organization is attempted with
component owners. They implement their portion of a customer fea-
ture in their component, hopefully keeping it stable. Note that sta-
bility is an ideal rather than an assured consequence of this
approach. It is common to find large product groups where the build
frequently breaks—often as a consequence of the many coordination
problems inherent to and between component teams.19

see Test and
Continuous
Integration in
companion

With feature teams, new—and just plain better—stability tech-
niques are used. Massive test automation with continuous integra-
tion (CI) is a key practice. When developers implement new
functionality, they write automated tests that are added to the CI
system and run constantly. When a test breaks:

1. The CI system automatically (for example, via e-mail or SMS)
informs the set of people who might have broken the build.

19. We have seen many examples of a three-month or worse ‘stabiliza-
tion’ phase in traditional large products that used component teams.

187

7 — Feature Teams

2. Upon notification, one or more of these people stop, investigate,
and bring the build back to stability.

– this CI attitude illustrates the lean principle of Stop and Fix

Infrastructure and Reuse Work

In a component team organization, goals such as a reusable frame-
work or improving test automation are usually met by formation of a
temporary project group or with an existing component team.

In a feature team organization with Scrum, these major goals are
added to the Product Backlog—an exception to the guideline to focus
on adding customer-feature items, since these goals span all fea-
tures.

This backlog infrastructure work is prioritized by the Product
Owner in collaboration with the teams. Then the infrastructure
work is given to an existing feature team, as any other backlog item.
This team works on infrastructure for a few iterations (delivering
incremental results each iteration) and thus may be called an infra-
structure team, a temporary role until they return to normal fea-
ture team responsibility.

Difficult-to-Learn Skills

potential skill
p. 207

A feature team may not have mastery of all skills needed to finish a
feature. This is a solvable problem if there is the potential skill
[KS01]. On the other hand, some skills are really tough to learn,
such as graphic art or specialized color mathematics. Solutions:

❑ fixed specialist for the iteration—This creates a constraint
in the iteration planning; all work related to that skill needs to
be done by the feature team with the specialist (who may be a
permanent or temporary visiting member).

– A good Stop and Fix approach to working with the specialist
is that he is a teacher and reviewer, not a doer

❑ roaming specialist—During the iteration planning several
teams request help from a specialist; she schedules which
teams she will work with (and coach) and roams between them.

188

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

❑ visit the specialist at her primary team—the specialist
physically stays with one feature team that needs her most (for
the iteration) and invites other people to visit her for mini-
design workshops, review, and consultation.

Solo specialists are bottlenecks; avoid these solutions unless team
learning is not an option. Encourage specialists to coach, not do.

Coordinating Functional Skills: Communities of Practice

communities of
practice p. 253

An old issue in cross-functional teams is the development and coor-
dination of functional skills and issues across the teams, such as
testing skills or architectural issues. The classic solution, previously
introduced, is to support communities of practice (COP)
[Wenger98, WMS02]. For example, there can be a COP leader for the
test discipline that coordinates education and resolution of common
issues across the testers who are full-time members of different fea-
ture teams and part-time members of a common testing COP.

Organizational Structure

In a component- and functional-team (for example, test team) orga-
nization, members typically report to component and functional
managers (for example, the “testing manager”). What is the man-
agement structure in an agile-oriented enterprise of cross-func-
tional, cross-component feature teams?

organizational
structure p. 242

In an agile enterprise, several feature teams can report to a common
feature team’s line manager. The developers and testers on the team
report to the same person. Note that this person is not a project
manager, because in Scrum and other agile methods, teams are self-
managing with respect to project work (11th agile principle).

Handling Defects

In a traditional component team structure, the team is usually given
responsibility for handling defects related to their component. Note
that this inhibits long-term systems improvement and throughput
by increasing interrupt-driven multitasking (reducing productivity)

189

7 — Feature Teams

for the team, and by avoiding learning and reinforcing the weakness
and bottleneck of depending upon single points of success or failure.

On a large product with (for example) 50 feature teams, an alterna-
tive that our clients have found useful is to have a rotating mainte-
nance (defect) group. Each iteration, a certain number of feature
teams move into the role of maintenance group. At the end of the
two or three iterations, they revert to feature teams doing new fea-
tures, and other feature teams move into maintenance. Lingering
defects that aren’t resolved by the timebox boundary are carried
back to the feature team role and wrapped up before new feature
work is done.

As an additional learning mechanism, consider adding the practice
of handling defects with pair programming, pairing someone who
knows more and someone who knows less, to increase skills transfer.

TRANSITION

In his report on feature teams in Ericsson [KAL00], Karlsson
observed, “Implementing daily build and feature teams in an organi-
zation with a strong [traditional] development process, distributed
development and a tradition of module [single component] responsi-
bility is not an easy task.” It takes hard work and management com-
mitment.

There are several tactics for transitioning to feature teams:

❑ reorganize into broad cross-component feature teams

❑ gradually expand team responsibility

Reorganize into Broad Cross-Component Feature Teams

One change tactic is to reorganize so that, collectively, the new
teams have knowledge of most of the system. How? By grouping dif-
ferent specialists from most component areas (Figure 7.11).

190

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

requirement
areas p. 218

A variation is that a new team is formed more narrowly with spe-
cialists from the subset of most components typically used in one
(customer) requirements area, such as “PDF printing.” This
approach exploits the fact that there is a semi-predictable subset of
components related to one requirements area. It is simpler to
achieve and reduces the learning burden on team members.

When one product at Xerox made the transition to feature teams, it
started out by forming larger (eleven- or twelve-member) teams
than the recommended Scrum average of seven. The advantage was
that a sufficiently broad cross-section of specialists was brought
together into feature teams capable of handling most features. The
disadvantage was that twelve members is an unwieldy size for cre-
ating a single jelled team with common purpose.

Figure 7.11 moving
to feature teams

Component A Team Feature Team Red

Feature Team Blue

… and so forth

Component B Team

A specialist

A specialist

A specialist

B specialist

B specialist
B specialist

C specialist

A specialist

B specialist

C specialist

A specialist

B specialist

191

7 — Feature Teams

Gradually Expand Teams’ Responsibility

For some, reorganizing to full-feature teams is considered too diffi-
cult, although in fact the impediments are often mindset and politi-
cal will. As an alternative, take smaller steps to gradually expand
teams’ responsibility from component to “multi-component” teams to
true feature teams.

Simplified example: Suppose an organization has four component
teams A, B, C, and D. Create two AB teams and two CD teams from
the original four groups, slowly broadening the responsibilities of
the teams, and increasing cross-component learning. A customer
feature will still need to be split across more flexible “multi-compo-
nent” teams, but things are a little better. Eight months later, the
two AB and two CD teams can be reformed into four ABCD teams…
and so on.

One Nokia product took this path, and formed AB teams based on
the guideline of combining from closely interacting components; that
is, they chose A and B components (and thus teams) that directly
interacted with each other. Consequently, the original team A and
team B developers already had some familiarity with each other’s
components, at least in terms of interfaces and responsibilities.

CONCLUSION

Why a detailed justification toward feature teams and away from
single-function teams and component teams? The latter approach is
endemic in large-product development. The transition from compo-
nent to feature teams is a profound shift in structure and mindset,
yet of vital importance to scaling agile methods, increasing learning,
being agile, and improving competitiveness and time to market.

RECOMMENDED READINGS

❑ Dynamics of SoftwareDevelopment by Jim McCarthy. Origi-
nally published in 1995 but republished in 2008. Jim’s book is a
true classic on software development. Already in 1995 it

192

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

emphasized feature teams. The rest of the book is stuffed with
insightful tips related to software development.

❑ “XP and Large Distributed Software Projects” by Karlsson and
Andersson. This early large-scale agile development article is
published in Extreme Programming Perspectives. It is a insight-
ful and much under-appreciated article describing the strong
relationship between feature teams and continuous integra-
tion.

❑ “How Do Committees Invent?” by Mel Conway. This 40-year
article is as insightful today as it was 40 years ago. It is avail-
able via the authors website at www.melconway.com.

❑ Agile Software Development in the Large by Jutta Eckstein.
This is the first book published on the topic of scaling agile
development. It describes the experience of a medium-sized
(around 100 people) project and stresses the importance of fea-
ture teams in large-scale development.

❑ “Promiscuous Pairing and Beginner’s Mind” by Arlo Belshee.
This article is not directly related to feature teams or large-
scale development but it does contain some facinating experi-
ments that question some of the assumptions behind special-
ization.

